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Abstract. Throwing needles onto a lined sheet of paper can be considered as the

first instance of a stochastic solver that approximates the value of π as reported by

Laplace in 1812. This paper examines four distinct stochastic solvers and three stop-

ping criteria to approximate the value of π: darts, needles1, needles2, needles3.

There is no doubt that increasing the number of throws improves the approximation

of π. Also, as a theoretician has already shown for the solver needles1, 9.008e+11 is

the number of required throws before we can accept with 95% confidence that the

correct value of the 5-th decimal place is 9, i.e. the value of π rounded to 5-decimal

digits is π̂5 = 3.14159. Results in this paper are empirical: in order to approximate

π̂5 = 3.14159 with the four stochastic solvers, the minimal number of required throws

are 275, 355, 452 and the estimated uncensored mean first-passage-time number of

throws are 748.8, 3338.9, 8199.2, 9445.2. For the sample size of 1100, the standard

errors associated with these mean values are 17.7, 96.2, 241.2, 279.4.
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I. Introduction

In 1777, Buffon formulated and solved the problem of finding the

probability that a needle of length L thrown onto a horizontal plane

ruled with parallel straight lines spaced by a distance d > L will in-

tersect one of these lines. In 1812, Laplace saw this problem in a new

light which resulted in a new method of evaluating π. He measured

the probability of intersection by throwing the needle onto the ruled

paper a very large number of times, recording the fraction of throws

resulting in an intersection of the needle with a line. In other words,

Laplace applied the frequency estimate of probability. Today, the use

of a needle and a lined sheet of paper can be considered as the first

instance of a stochastic solver that approximates the value of π as

reported by Laplace in 1812.

Initially, introducing Laplace’s experiments as the motivational

lecture of the project-oriented course on stochastic optimization ap-

peared as the right choice. However, it soon became apparent that

additional questions and insights gained during the follow-up lecture

could well provide a formal framework for rigorous performance

testing of all current and any future stochastic optimization solvers.

The goal of this paper is to provide a foundation for such framework.

I.1 About π and the number of decimal digits

The fascination with digits of π has a long history. Examples

of π values are listed in Figure 1; details are being explained next.

(a) 3.14159 26535 89793 23846 26433

(b) 3.14159 26535 89793 23846 26433 83279 ...

(c) 3.14159 26535 89793 11599 8

(d) 3.14159 26535 89793

Figure 1: The digits reported for the
value of π. In case (c), digits beyond the
15-th decimal digit are in error. See the
adjacent text for more details.

(a) a 20-decimal digit value as reported in Wikipedia;1

1 Wikipedia, https://en.wikipedia.
org/wiki/Pi

(b) 100, 000 digits of π – as reported by a π aficionado;2

2 100, 000 digits of π , http://www.geom.
uiuc.edu/~huberty/math5337/groupe/

digits.html

(c) a 22-decimal digit value of π which is in error after the 15-th

decimal digit. We can replicate this error with the commands

> options(digits=22) ; pi

[1] 3.141592653589793115998

under the R-shell.3 We take this limitation into account when
3 The R Project for Statistical Com-
puting, https://www.r-project.org/

programming in R by relying on the 15-decimal digit value of π.

(d) The 15-decimal digit value, π15 = 3.141592653589793, is also used

by NASA for the highest accuracy calculations during interplan-

etary navigation. Paraphrasing the NASA report: with respect to

Voyager 1, about 12.5 billion miles away from Earth, the error in calcu-

lating the distance to the Voyageur is about 1.5 inches.4

4 From jpl.nasa.gov/edu/,
March 16, 2016, https://www.
jpl.nasa.gov/edu/news/2016/3/16/

how-many-decimals-of-pi-do-we-really-need/

I.2 Publication Highlights

The scope and the number of citations about π is overwhelm-

ing. The informative and popular book by Petr Beckmann is still in

print5, albeit not without errors in history and mathematics6. On the

5 Petr Beckmann. A History of Pi,
Second Edition. Golem Press, Boulder,
Colorado, 1971

6 Henry W. Gould, AMS Reviews and
Descriptions of Tables and Books,
Math. Comp. 28 (1974), 325-339,
http://www.ams.org/journals/mcom/

1974-28-125/S0025-5718-74-99692-6/

S0025-5718-74-99692-6.pdf



throwing darts and needles under four configurations: the mean first passage time of ...

3

other end of a spectrum, a formal mathematical as well as historical

perspective on π is available in a recent monograph7. An amazing

7 Jonathan M. Borwein. The Life of Pi:
From Archimedes to ENIAC and Beyond,
chapter From Alexandria, Through
Baghdad, pages 531–561. Springer,
Berlin, Heidelberg, 2014

closed-form expression, now known as the BPP formula, was discov-

ered only recently8.
8 David Bailey, Peter Borwein, and
Simon Plouffe. On the rapid com-
putation of various polylogarithmic
constants. Mathematics of Computation
of the American Mathematical Society,
66(218):903–913, 1997

This formula, reproduced in Eq. 2 and analyzed by way of a first-

passage-time experiment in Figure 2 provides the framework for the

construction of this paper. Whereas the experiments in Figure 2 es-

tablish in linear time the minimum number of terms to be included

in the formula in order to compute π with exactly k decimal digits,

we apply the same principle to experimentally determine the mean

first-passage-time for four stochastic solvers. Instead of counting the

required number of terms in Eq. 2, we count the required number of

throws (of darts or needles) onto a specific geometric configuration.

Articles that are also a source of relevant concepts and notation

used in the paper include this list9.

9 N. T. Gridgeman. Geometric Prob-
ability and the Number Pi. Scripta
Mathematica, 25:183–195, Novem-
ber 1960; Michael D. Perlman and
Michael J. Wichura. Sharpening Buf-
fon’s Needle. The American Statistician,
29:157–163, November 1975; Folkmar
Bornemann, Dirk Laurie, Stan Wagon,
and Jorg Waldvogel. The SIAM 100-
digit challenge: a study in high-accuracy
numerical computing, volume 86. SIAM,
2004; and Enis Sinikrasan. Throwing
Buffon’s Needle with Mathematica. The
Mathematica Journal, 11, 2008

In 1901, Lazzarini performed a series of needle-throwing exper-

iments and reported an astonishingly accurate value for π10. The

10 M. Lazzarini. Un’ applicazione del
calcolo della probabilità alla ricerca
sperimentale di un valore approsimato
di Pi. Periodico di Matematica, 4:140–143,
1901

experiment is now considered a hoax11.

11 N. T. Gridgeman. Geometric Prob-
ability and the Number Pi. Scripta
Mathematica, 25:183–195, November
1960; and Lee Badger. Lazzarini’s
Lucky Approximation of Pi. Mathemat-
ics Magazine, 67(2):83–91, 1994

Conceptual errors in evaluation of geometric probabilities related

to π have been discovered and corrected12.

12 Lee L Schroeder. Buffon’s needle
problem: An exciting application of
many mathematical concepts. Mathe-
matics Teacher, 67(2):183–186, 1974; and
Barry J Arnow. On Laplace’s extension
of the Buffon needle problem. The
College Mathematics Journal, 25(1):40–43,
1994

Additional sections are organized as follows:

II. Background and Motivation:

two formulas about π, formalizing the notation, definitions of four

stochastic solvers that converge, with increasing the number of

throws, to rounded values of πk, with k denoting the number of

decimal digits.

III. Stopping the Throws and Counting the Misses:

R-code templates that implement three criteria to stop the throws,

experiments with four stochastic solvers that generate empirical

cumulative distribution functions (ECDFs) and asymptotic models

for each solver under three stopping criteria.

IV. Aggregates of Mean First-Passage-Times with Four Solvers

V. Summary and Conclusions

VI. Appendix:

On Limitations of the Stopping Criterion plain

II. Background and Motivation

We organize this section into five subsections:

(1) formulas that converge to π;

(2) notation and the asymptotic first-passage experiment;

(3) on four stochastic solvers for π;

(4) on asymptotic variances of stochastic solvers;

(5) on minimal number of required throws.
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II.1 Two Formulas as Solvers

In 1666, Newton, used a geometric construction to derive the for-

mula for π13:

13 Look for Equation (19) under http:
//mathworld.wolfram.com/PiFormulas.

html

π =
3
√

3

4
+ 24(

1

12
− 1

5 · 25
− 1

28 · 27
− 1

72 · 29
− 5

704 · 211
− · · · ) (1)

The evaluation of the first 6 terms of Eq. 1 is shown in Table 1. We

find by inspection that only the fourth term rounds to correct 3 deci-

mal digits: π̂3 = 3.142.

numTerms piHat piHat - pi15

1 1.29904 -1.84255

2 3.29904 0.15745

3 3.14873 0.00714

4 3.14204 0.00044

5 3.14138 -0.00021

6 3.14130 -0.00029

Table 1: Convergence to π15 as we
increase the number of terms in Eq. 1.

Formulas such as Eq. 1 have been evolving over centuries. Some

of the most significant improvements are relatively recent such as the

amazing BPP formula14: 14 David Bailey, Peter Borwein, and
Simon Plouffe. On the rapid com-
putation of various polylogarithmic
constants. Mathematics of Computation
of the American Mathematical Society,
66(218):903–913, 1997

π =
∞

∑
n=0

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6
)(1/16)n (2)

numTerms piHat piHat - pi15

1 3.1333333 -0.008259

2 3.1414225 -0.000170

3 3.1415874 -5.26e-06

Table 2: Convergence to π15 as we
increase the number of terms in Eq. 2.

The first three values of π̂ expressed by Eq. 2 are listed in Table 2.

For the third value, π̂ = 3.1415874, we find by inspection that this

value rounds correctly to values of π with 3, 4, or 5 decimal digits:

3.142, 3.1416, or 3.14159.

II.1 Notation and the Asymptotic First-Passage-Time Experiment

The notation in Table 3 and Eq. 9 supports the comprehensive

asymptotic performance experiment summarized in Figure 2 as well as

all other experiments in this paper. This experiment not only estab-

lishes the asymptotic convergence rate of Eq. 2; it also serves as a

template for the follow-up experiments with four stochastic solvers.

In Eq. 2, we count the number terms that are required before we can

observe a solution that converges to π̂k = round(π̂, k) where k is

the number of decimal digits. With any of our stochastic solvers, we

count the number of throws (of darts or needles) that are required be-

fore we can observe, for the first time, the value of π̂k fall within the

range of πk ± ∆k.

The unrounded errors shown as differences π̂ − π15 in Tables 1

and 2 are useful indicators about the rate of convergence towards

π15. However, we shall rely on definitions in Table 3 and definitions

grouped with Eq. 9 to describe results of the experiment in Figure 2.

π15 = 3.141592653589793 (3)

πk = round(π15, k) (the target value) (4)

∆k = ±0.5/10k (5)

π̂ = approximation of π by a solver (6)

π̂k = round(π̂, k) (7)

ǫk = π̂ − πk (8)

ǫkk = round(ǫk, k) (9)

There are two phases of the experiment in Figure 2. In Phase 1, we

implement the R-function fg_pi_BPP_asym exactly as shown. When
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symbol name description

t throws number of throws (darts or needles)

tU throwsU a limit on the number of throws before the next restart

tLmt throwsLmt a limit on the total number of throws

m misses number of misses (darts or needles)

h hits number of hits ( = t − m)

ρ restarts number of restarts, incremented after each completion of tU throws

k decDigits number of decimal digits used to round the value of π̂

πk pi_k value of π rounded to k decimal digits

∆k piTol_k tolerance value (±0.5/10k) associated with value of πk

π̂ piHat approximate value of π returned by a solver

π̂k piHat_k value of π̂ rounded to k decimal digits

ǫk piError_k error difference = π̂ − πk

ǫkk piError_kk rounded value of ǫk. Solver stops uncensored

if (ǫkk == 0) before t < tLmt.

piNewton solver, defined by Eq. 1

piBPP solver, defined by Eq. 2

darts solver, throwing darts onto a circle

needles1 solver, throwing needles onto a single-grid configuration

needles2 solver, throwing needles onto a double-grid configuration

needles3 solver, throwing needles onto a triple-grid configuration

AVar(π̂)i AVar(piHat)_i asymptotic variance for solver i in Table 4

t95(π̂)i,k t95(piHat)_i,k required number of throws for solver i in Table 4

to reach target value of πk with 95% confidence

tMini,k
tMin_i,k minimal number of throws for solver i that are required to

obtain a solution with k decimal digits. We say that the

solution is uncensored if ǫkk = 0 before t < tLmt

bMini,k
bMin_i,k a binary sequence of length tMini,k

as a representation of

the solution: 0’s represent misses, 1’s represent hits

Table 3: Symbols, names, and descrip-
tions that represent key elements of
notation used in this paper.invoked, it creates the table shown in the table next to the function:

the column names have been added manually. The computational

flow is simple: (a) compute and save 18 terms of the BPP formula

in Eq. 2, (b) for each value of decimal digit k, compute πk and ∆k,

then increment terms of the BPP formula to iteratively compute π̂,

π̂k, ǫk, and ǫkk. There are two conditions that can stop the iterations:

(ǫkk == 0) or (terms == termsLmt). If (ǫkk == 0) before reaching

(terms == termsLmt), we say that the variable denoted as terms is

uncensored. Otherwise, we say that the variable terms is censored.

Clearly, in the context of this paper, variables that are censored cannot

provide reliable information about convergence properties of any

solver that returns π̂ to approximate the value of π.

The book on First-Passage Processes15 explains that 15 Sidney Redner. A Guide to First-
Passage Processes. Cambridge University
Press, 2001... first passage underlies many stochastic processes in which the event,

such as a dinner date, a chemical reaction, the firing of a neutron, or

the triggering of a stock option relies on a variable reaching a specified

value for the first time ...
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1 fg_pi_BPP_asym = function(decDigits=0:15)

2 {

3 # precompute the terms of formula piBPP

4 piTerms = NULL ; termsLmt = 18

5 for (i in 1:termsLmt) {

6 n = i - 1

7 piTerms[i] = (4/(8*n + 1) - 2/(8*n + 4) -

8 1/(8*n + 5) - 1/(8*n + 6))*(1/16)^n

9 }

10 pi15 = 3.141592653589793 ; # best-known-value for k=15

11

12 for (k in decDigits) {

13 pi_k = round(pi15, k) ;# target value

14 piTol_k = 0.5/10^k

15 piHat = 0 ; terms = 0

16

17 while (1) {

18 terms = terms + 1

19 piHat = piHat + piTerms[terms]

20 # completed piHat for ’piBPP’; begin quantization

21 piHat_k = round(piHat, k)

22 piError_k = piHat - pi_k

23 # quantize error, break when piError_kk = 0

24 piError_kk = round(piError_k, k)

25

26 if (piError_kk == 0 ) {isCensored = FALSE ; break}

27 if (terms == termsLmt) {isCensored = TRUE ; break}

28 }

29 cat(k, terms, piHat_k, piError_k, piTol_k, isCensored, "\n")

30 }

31 } # fg_pi_BPP_asym

The R-code on the left is also a template

for the first-passage-time experiments with

R-code that implements stochastic solvers

such as shown in Figure 8. We only need

to interchange variables terms and throws

while maintaining the same formulation of

the stopping criterion ǫkk == 0.

k terms piHat_k piError_k piTol_k

-- ----- ------- --------- -------

0 1 3 0.133 0.5

1 1 3.1 0.0333 0.05

2 2 3.14 0.00142 0.005

3 3 3.142 -0.000413 5e-04

4 3 3.1416 -1.26e-05 5e-05

5 3 3.14159 -2.61e-06 5e-06

6 5 3.141593 -3.55e-07 5e-07

7 6 3.1415927 -4.68e-08 5e-08

8 5 3.14159265 -4.54e-09 5e-09

9 7 3.141592654 -4.27e-10 5e-10

10 7 3.1415926536 -2.71e-11 5e-11

11 8 3.14159265359 -1.03e-12 5e-12

12 9 3.14159265359 -2.48e-13 5e-13

13 9 3.1415926535898 -4.80e-14 5e-14

14 10 3.14159265358979 1.33e-15 5e-15

15 11 3.141592653589793 0 5e-16

k, number of decimal digits
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asymptotic error model for formula piBPP

     0.2511*0.09977^k

symbol for error value = 0

Figure 2: The complete R-code for an
asymptotic experiment to verify the
efficiency of the BPP formula in Eq. 2.
The symbol H denotes ǫkk = 0 since the
error value of 0 cannot be plotted on a
log-scale.

As we replace the variable terms implied by Eq. 2 with the random

variable throws implied by throws in stochastic solvers, we argue that

the iterative search as formulated with Figure 2 can also be viewed

as an example of the first passage process where the stopping criterion

(ǫkk == 0) is the event that establishes the first-passage-time either for
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terms or throws. In this paper, we link inextricably both the notion of

the uncensored variables with the notion of first-passage-time.

In Phase 2, we extend the R-code in Figure 2 to plot the tabu-

lated values of terms versus decimal digits k and the tabulated val-

ues of ǫk and ∆k versus decimal digits k. Notably, only 11 terms

are required before reaching the value of π with 15 decimal digits,

the most precise representation of π available in R. The asymptotic

model in Eq. 10 associates with the BPP formula in Eq. 2:

ǫk = 0.2511 ∗ (0.09977)k (10)

This formula is the reference asymptotic model for the experiments

with stochastic solvers in this project.

II.3 On Four Stochastic Solvers for π

In contrast to solvers based on formulas that converge to value

of π rapidly, the stochastic solvers we consider in this paper converge

to π not only at much lower rates but we also observe significant dif-

ferences in the convergence rate of each solver. The names of the four

solvers have already been introduced in Table 3. We now introduce

formulas for the estimated value π̂ of each solver, along with com-

panion illustrations that suggest their configuration and evaluation.

darts

Darts are thrown onto a plane featuring a circle with a unit diame-

ter, see Figure 3. We count the number of throws t and the number

of misses m defined by the event of dart not hitting the circle.

Figure 3: The darts solver.

We use Eq. 11 to evaluate the estimated value of π̂.

π̂ = 4 ∗ (1 − m/t) (11)

needles1

Needles of unit length are thrown onto a plane featuring a single

grid defined by parallel lines a unit distance apart, see Figure 4.

We count the number of throws t and the number of misses m

(blue dots) defined by the event of needle not hitting any of the

lines.

Figure 4: The needles1 solver.

We use Eq. 12 to evaluate the estimated value of π̂.

π̂ = 2/(1 − m/t) (12)

needles2

Needles of unit length are thrown onto a a plane featuring a dou-

ble grid defined by a grid of unit squares, see Figure 5. We count

the number of throws t and the number of misses m defined by the

event of needle not hitting any of the lines.

Figure 5: The needles2 solver.

We use Eq. 13 to evaluate the estimated value of π̂.

π̂ = 3/(1 − m/t) (13)
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needles3

Needles of unit length are thrown onto a a plane featuring a triple

grid defined by a grid of equilateral triangles of unit height, see

Figure 6. We count the number of throws t and the number of

misses m defined by the event of needle not hitting any of the

lines.

Figure 6: The needles3 solver.

We use Eq. 14 to evaluate the estimated value of π̂.

π̂ = 3 ∗ (4 − sqrt(3)/2)/(3 − 2 ∗ m/t) (14)

Each of the four formulas, from Eq. 11 to Eq. 14, plays an important

role both in determining asymptotic variance of each solver as well

as in supporting the search for the minimal number of throws that are

required before either of the four solvers reaches, for the first time, the

target value

π̂k = round(π̂, k)

where k denotes the number of decimal digits in π̂k.

The next two subsections provide details about the asymptotic

variance and the minimal number of throws, respectively.

II.4 On Asymptotic Variances of Stochastic Solvers

The asymptotic variances of the four stochastic solvers are

summarized in Table 4. The symbol for the asymptotic variance,

AVar(π̂)i, paraphrases the notation used by Sinikrasan.16. Only the 16 Enis Sinikrasan. Throwing Buf-
fon’s Needle with Mathematica. The
Mathematica Journal, 11, 2008

variance for solver darts, AVar(π̂)0 = 2.69, has been derived in this

paper. The variances for AVar(π̂)1 = 5.63 and AVar(π̂)2 = 0.4658

and the basis for the required number of throws, t95(π̂)i,k, originate

with Gridgeman.17 The variance AVar(π̂)3 = 0.01578 originates with 17 N. T. Gridgeman. Geometric Prob-
ability and the Number Pi. Scripta
Mathematica, 25:183–195, November
1960

Perlman and Wichura.18 The values of AVar(π̂)1 and AVar(π̂)2 are in

18 Michael D. Perlman and Michael J.
Wichura. Sharpening Buffon’s Needle.
The American Statistician, 29:157–163,
November 1975

agreement with values derived earlier by Gridgeman.

An important question posited by Gridgeman in his 1960 paper is

this: “How many casts of the needle must be made before I can con-

fidently accept the k-th decimal place of my estimate of π?” Using

current notation, Eq. 15 below paraphrases Gridgeman’s Eq. 24 for

solver 1:

2 ∗
√

5.63/t95(π̂)1,k = 0.5/10k (15)

An asymptotic model, based on solutions of Eq. 15, lists the re-

quired number of throws t95(π̂)i,k in Table 4 and in Figure 7. While

we could readily verify this model for k = 1, k = 2 with solvers

needles2 and needles3, the number of required throws t95(π̂)1,k

increases rapidly.
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i solveri AVar(π̂)i t95(π̂)i,k

0 darts 2.69/t round(16 ∗ 2.69 ∗ 10(2∗k), 0)

1 needles1 5.63/t round(16 ∗ 5.63 ∗ 10(2∗k), 0)

2 needles2 0.4658/t round(16 ∗ 0.4658 ∗ 10(2∗k), 0)

3 needles3 0.01578/t round(16 ∗ 0.01578 ∗ 10(2∗k), 0)

Table 4: Solver-specific symptotic vari-
ances (AVar(π̂)i) and 95% confidence
bounds on required throws (t95(π̂)i,k),
rounded to k decimal digits.

sampleSize seed solver k piTol_k throws S(%)

---------- ---- -------- -- ------- ----- ----

100 1066 darts 1 0.05 4304 91

100 1215 darts 1 0.05 4304 96

100 1492 darts 1 0.05 4304 94

100 1066 needles1 1 0.05 9008 95

100 1215 needles1 1 0.05 9008 97

100 1492 needles1 1 0.05 9008 96

100 1066 needles2 1 0.05 745 93

100 1215 needles2 1 0.05 745 97

100 1492 needles2 1 0.05 745 98

100 1066 needles3 1 0.05 25 87

100 1215 needles3 1 0.05 25 92

100 1492 needles3 1 0.05 25 91

100 1066 needles2 2 0.005 74528 95

100 1215 needles2 2 0.005 74528 98

100 1492 needles2 2 0.005 74528 95

100 1066 needles3 2 0.005 2525 95

100 1215 needles3 2 0.005 2525 96

100 1492 needles3 2 0.005 2525 94

Figure 7: A model that predicts the
number of throws of dart or needles so
that we can accept with 95% confidence
that the k-th decimal place of π̂k is the
correct value of π.

The adjacent table summarizes
results of an experiment with sampleSize
= 100, repeated for 3 different seeds
for the specified number of throws and
value of k = 1 and 2. The experiment
confirms the model predictions well:
the column S(%) reports the percentage
of successes where success denotes
that the k-th decimal digit has been
observed as correct. The fact that for
needles3 and k = 1, the observed value
of S(%) is consistently below 95 can be
attributed to Eq. 15: the equation is not
being sufficiently precise when throws
= 25.

II.5 On Minimal Number of Required Throws

Intuitively, the number of throws that are required before a

stochastic solver may reach the target value of π̂k depends on the

specified value of decimal digits k and the random seed. The larger

the value of k, more and more throws are required. A highly conser-

vative estimate is provided by Eq. 15: O(900, 800) throws are required

before we can accept with probability of 95% that the 2-nd decimal

place is the correct value of π.

However, if we ask, for k = 2, “How many throws of the needle

(or the dart) must be made before we will compute π̂k for the first

time?” we expect the required number of throws to be significantly

less than 900, 800. See Table 5 for answers: e.g. 11 throws, 4 misses

for needles1 and k = 2.

Finding the minimum required number of throws so that π̂ = π̂k

for k > 6 is a hard search problem. One formulation is suggested

in Table 3: encode a binary sequence of length L ≥ tMini,k
with 0’s

representing misses, 1’s representing hits. For needles1 and k = 2:

there are a total (11
4 ) = 330 solutions, one of them is 01111010110.

In this paper, values in Table 5 are a by-product of experiments

discussed in the next section. These include the ‘re-discovery’ of

π̂ = 355/113, accurate to 6 decimal places, and known since 500 AD.

This approximation is attributed to Zu Chongzhi19.
19 Zu Chongzhi, https://en.
wikipedia.org/wiki/Zu_Chongzhi
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solver = darts solver = needles1

piHat = 4*(1 - misses/throws) piHat = 2/(1 - misses/throws)

----------------------------- -----------------------------

k piHat_k ratios throws misses ratios throws misses

-- ------- ------- ------ ------ ------- ------ ------

1 3.1 28/9 9 2 22/7 11 4

2 3.14 22/7 14 3 22/7 11 4

3 3.142 688/219 219 47 333/106 333 121

4 3.1416 688/219 219 47 688/219 344 125

5 3.14159 355/113 452 97 355/113 355 129

6 3.141593 355/113 452 97 355/113 355 129

.. ......

.. ......

15 3.141592653589793

-----------------------------------------------------------------------------

solver = needles2 solver = needles3

piHat = 3*(4 - sqrt(3)/2)/

piHat = 3/(1 - misses/throws) (3 - 2*misses/throws)

----------------------------- -----------------------------

k piHat_k ratios throws misses throws misses

-- ------- ------- ------ ------ ------- ------

1 3.1 22/7 22 1 1 0

2 3.14 22/7 22 1 191 1

3 3.142 333/106 111 5 246 1

4 3.1416 355/113 244 11 273 1

5 3.14159 355/113 355 16 275 1

6 3.141593 355/113 355 16 2749 10

.. ......

.. ......

15 3.141592653589793

Table 5: Denoting k as the number
of decimal digits and misses as the
random variable, this table relates the
rounded values of π̂ to the minimal
number of throws that are required
before either of the four solvers may
reach, for the first time, the target value

π̂k = round(π̂, k)

We use the word minimal to denote that
the required number throws for needles3

and k = 6 are not necessarily minimum!
For problem as formulated in this
paper, current computational resources
are inadequate to measure uncensored
performance of these stochastic solvers
much beyond k > 6 within a week
of computational effort. However,
Figure 2 demonstrates that using
Eq. 2 to compute the value of π with
high accuracy is both highly efficient
and effective. The value of π with
15 decimal digits is reportedly used
by NASA for the highest accuracy
calculations during interplanetary
navigations.

III. Stopping the Throws and Counting the Misses

We examine three stopping criteria under the three acronyms:

plain, fptC, and fptR. For details about each criterion and the re-

spective R-code templates, see subsection III.1. Subsections that fol-

low summarize a number of experiments with four solvers under

each of the three stopping criteria.

III.1 On Stopping Templates

All stochastic solvers are subject to specific stopping criteria.

To facilitate correct implementation with each solver, we use three

R-code templates in Figure 8, each implementing the solver darts:

plain:

number of throws is predetermined,

fptC:

first-passage-time without restarts,

fptR:

first-passage-time with restarts.

Notably, both fptC and fptR are derived directly from the first-

passage-time template that verifies the efficiency of the BPP formula

in Figure 2. The formulation of the stopping criterion ǫkk == 0 has

not changed; we only interchanged the variable terms with throws.
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1 ## solverName = darts

2 ## stopping criterion = plain

3 ## (stop if (throws == throwsLmt) )

4 #

5 seed = round(0.5 + 1e9*runif(1))

6 set.seed(seed) ;# initialize RNG

7 pi15 = 3.141592653589793

8 throwsLmt = 1e7 ;# 1e1, 1e2, 1e3, 1e4, ...

9 throws = 0 ; misses = 0

10

11 while (1) { ;# count throws

12 throws = throws + 1

13 x = runif(1,-1,1)

14 y = runif(1,-1,1)

15 if (x^2 + y^2 > 1) {misses = misses + 1}

16 piHat = 4*(1 - misses/throws)

17 # completed piHat for ’darts’

18 piError = piHat - pi15

19 if (throws == throwsLmt) {break}

20 }

21 return( c(piHat, piError, seed) )

1 ## solverName = darts

2 ## stopping criterion = fptC

3 ## (first-passage-time, no restarts)

4 #

5 seed = round(0.5 + 1e9*runif(1))

6 set.seed(seed) ;# initialize RNG

7 pi15 = 3.141592653589793

8 k = decDigits

9 pi_k = round(pi15, k)

10 throwsLmt = 4*round(16*2.69*10^(2*k), 0)

11 throws = 0 ; misses = 0

12

13 while (1) { ;# count throws

14 throws = throws + 1

15 x = runif(1,-1,1)

16 y = runif(1,-1,1)

17 if (x^2 + y^2 > 1) {misses = misses + 1}

18 piHat = 4*(1 - misses/throws)

19 # completed piHat for ’darts’; begin quantization

20 piHat_k = round(piHat, k)

21 piError_k = piHat - pi_k

22 # quantize and break when piError_kk = 0

23 piError_kk = round(piError_k, k)

24 if (piError_kk == 0) {

25 isCensored = FALSE ; break

26 }

27 if (throws == throwsLmt) {

28 isCensored = TRUE ; break

29 }

30 }

31 return( c(throws, isCensored,

32 piHat_k, piError_k, seed) )

1 ## solverName = darts

2 ## stopping criterion = fptR

3 ## (first-passage-time, with restarts)

4 #

5 seed = round(0.5 + 1e9*runif(1))

6 pi15 = 3.141592653589793

7 k = decDigits

8 pi_k = round(pi15, k)

9

10

11 throwsLmt = 4*round(16*2.69*10^(2*k), 0)

12 throwsU[1] = 9

13 throwsU[2] = 14

14 throwsU[3] = 219

15 throwsU[4] = 219

16 throwsU[5] = 452

17 throwsU[6] = 452

18

19 throws = 0 ; restarts = -1

20

21 while (1) { ;# count restarts

22 restarts = restarts + 1

23 set.seed(seed) ;# initialize RNG

24 throws2 = 0 ; misses2 = 0

25

26

27 while (1) { ;# count throws

28 throws2 = throws2 + 1

29 x = runif(1,-1,1)

30 y = runif(1,-1,1)

31 if (x^2 + y^2 > 1) {misses2 = misses2 + 1}

32 piHat = 4*(1 - misses2/throws2)

33 # completed piHat for ’darts’; begin quantization

34 piHat_k = round(piHat, k)

35 piError_k = piHat - pi_k

36 # quantize and break when piError_kk = 0

37 piError_kk = round(piError_k, k)

38 if (piError_kk == 0) {

39 isCensored = FALSE ; break

40 }

41 if (throws2 == throwsU[k]) {

42 isCensored = TRUE ; break

43 }

44 }

45 throws = throws + throws2

46 if (!isCensored) {break}

47 if (throws == throwsLmt) {

48 isCensored = TRUE ; break

49 }

50 # new seed for the next restart

51 seed = round(0.5 + 1e9*runif(1))

52 }

53 return( c(throws, restarts, isCensored,

54 piHat_k, piError_k, seed) )

Figure 8: Snippets of R code that
implement three stopping criteria for
the stochastic solver darts:
plain: number of throws is predetermined,
fptC: first-passage-time without restarts,
fptR: first-passage-time with restarts.

The same stopping criteria apply to
other solvers.

III.2 Experiments with four solvers stopping under plain

The stopping criterion plain is the default stopping criterion for

most experiments with stochastic solvers today. Its distinguishing

feature is simplicity: one needs only to count the throws (or runtime

in seconds) and stop the iterations upon reaching the predetermined

number of throws or seconds. However, when used to test perfor-
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mance of two or more solvers, interpretation of observed results may

become ambiguous. We demonstrate this ambiguity with a series of

experiments indexed by

throws × solvers × seeds

where, expressed in R-code and for n = sampleSize:

throws = c(101, 102, 103, 104, 105, 106, 107)

solvers = c(darts, needles1, needles2, needles3)

seeds = round(1e9 ∗ runi f (n = 100, 0))

These experiments produce 2800 estimates of π̂. Several views of

these experiments are depicted in Figures 9 and 10. We summarize

them next.

At a first glance, the solver performance ambiguities in Figure 9

may appear unexpected. Table 4 lists asymptotic variances of four

solvers, with needles3 exibiting a variance that is two orders of mag-

nitude below darts. And yet for throws = 105, both solvers are

returning mean values of π̂ with nearly the same error, regardless of

the reference value of πk we use: 3.142, 3.14159, or 3.141592653589793

(not shown). Based on the aymptotic variances of four solvers in

Table 4, the expected ranking of solvers,

needles3 > needles2 > darts > needles1

is being observed for several value of throws – but not for all values.

On the other hand, before comparing merits of any two stochastic

solvers, the question we should ask is this: “what is the mean number of

required throws for each solver to reach the same target range?” This ques-

tion is being addressed with the first-passage-time stopping criteria

fptC/fptR in the follow-up sections. For additional arguments that

can and do arise when we use plain as the stopping criterion, see the

Appendix.
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Figure 9: Significant ambiguities can
arise when we evaluate the performance
of four stochastic solvers under a pre-
determined number of throws (or a
predetermined runtime). Later in the
paper we demonstrate that under the
first-passage-time stopping criterion, the
solver needles3 is unambiguously
the significantly better solver in com-
parisons to other solvers. Under the
tests shown here, we cannot make
such conclusions with high confidence.
What reference value should we choose
to measure the error of the reported
mean value π̂, how should we chose
the ‘best’ number for throws so we can
reliably evaluate the performance of four
solvers?

Buffon’s needles experiments at the top of Figure 10 depict

views that are as expected under more traditional analysis. As we

increase the number of throws beyond 104 we gain better insights

by measuring error values rather than values of π̂ directly. Notably,

the plot that depicts sample standard deviation is in a remarkable

agreement with predictions of asymptotic variances in Table 4. The

histogram classifies 2800 estimates of π̂ into five categories, defined

by the number of decimal digits k. This histogram also reveals a

number of useful observations that offer a modicum of explanation

for the ambiguities observed in Figure 9: (1) as k → 1, solvers appear

more and more equivalent; (2) as k → 5, differentiation between

solvers increases dramatically. For errors below 5e-06, the tabulated

frequency counts in the histogram can also be verified in the adjacent

scattergram: 0 + 1 + 1 = 2 observations for darts, 1 + 0 + 0 = 1
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These two web sites simulate interactive

demonstrations of throwing Buffon’s

needles onto a grid of parallel lines. The

convergence towards the value of π is

unmistakeable. However, O(900, 800)

throws are required before we can

accept with high probability that the

2-nd decimal place is the correct value

of π. We find the number of throws by

solving Eq. 15.
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Figure 10: Properties of four stochastic
solvers under the stopping criterion
plain. Each solver stops after exactly
10, 100, 1000, ..., 10, 000, 000 throws. A
total of 7 ∗ 100 ∗ 4 = 2800 estimates of π̂

have been generated.

observations for needles1, 0 + 1 + 3 = 4 observations for needles2,

1 + 4 + 11 = 16 observations for needles3. Additional observations of

needles3 are attributed to extensions of experiments with k < 5.
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Figure 11: Throwing darts and monitor-
ing the error ǫk = |π̂ − πk | for k = 5
under two stopping criteria, fptC (first-
passage-time without restarts) and fptR

(first-passage-time with restarts). No-
tably, under fptC we observe heavy-tail
distribution of throws. However, un-
der fptR we observe near-exponential
distribution of throws. Under fptR we
observe the minimal number of throws
= 452, where ǫkk = 0, significantly more
frequently than under fptR. The symbol
H denotes ǫkk = 0 since the error value
of 0 cannot be plotted on a log-scale.

III.3 Experiments with solver darts stopping under fptC/fptR

We divide the experiments with solver darts into two part; re-

sults are depicted in Figures 11 and 12. The experiment in the top

of Figure 11 implements the throws exactly as outlined in the tem-

plate for stopping criterion fptC in Figure 8, given the target value

of π5 = 3.14159, i.e. for k = 5. With the initial seed = 2624, the error

ǫk = π̂ − πk fluctuates until

ǫkk = round(ǫk, k) = 0

i.e. the target value is reached on throw 10, 573. By changing the

initial seed to 117691204, the target value is reached only on throw

3, 654, 750. For the initial seed = 892288677, the target value is reached

in the minimum number of throws: 452. For two initial seeds, 324900668
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Figure 12: First-passage-time exper-
iments with solver darts under two
stopping criteria: fptC and fptR. The
results reported for fptC are based on a
sample size of 100, the results reported
for fptR, as ECDF and as asymptotic
model, are based on a sample size of
11 ∗ 100 = 1100 where 11 is the number
of replicates. The dispersed values of
throws are marked with symbol ×,
the mean value of each replicate are
marked with symbol •, the mean value
of all 11 replicates is marked with sym-
bol ⊠. The minimal number of throws
of 452 in ECDF has been discussed in
Table 5.

and 734048780, the target value is not reached since both experiments

are being censored on reaching the throw limit, tLmt = 107. The ECDF

for this experiment in Figure 12 suggests a heavy-tail distribution

under the stopping criterion fptC.

Two experiments in the lower part of Figure 11 implement throws

exactly as outlined in the template for fptR in Figure 8, With the

initial seed = 2624 (the same seed used under fptC) , the error ǫk =

π̂ − πk fluctuates between five random restarts before reaching the

same target value (π5 = 3.14159) on throw 2, 712. This experiment

also reports the last random seed, seedLast = 783967185, that invoked

the last sequence of throws and reached the target value. By reusing

this last seed as the new initial seed in the second experiment, we

reach the target value in the minimum number of throws: 452.

Random restarts under the uncensored first-passage runtime stopping

criterion is one of the heuristics we have used to achieve state-of-the-

art solutions for a number of hard combinatorial problems20. In each

20 Franc Brglez, Xiao Y. Li, Matthias F.
Stallmann, and Burkhard Militzer.
Reliable Cost Predictions for Finding
Optimal Solutions to LABS Problem:
Evolutionary and Alternative Algo-
rithms. In Fifth Int. Workshop on Frontiers
in Evolutionary Algorithms (FEA2003),
2003. http://militzer.berkeley.edu/
papers/2003-FEA-Brglez-posted.pdf;
Borko Bošković, Franc Brglez, and
Janez Brest. Low-Autocorrelation Bi-
nary Sequences: On Improved Merit
Factors and Runtime Predictions to
Achieve Them. Applied Soft Comput-
ing Journal – Elsevier, 2017; and Franc
Brglez, Borko Bošković, and Janez
Brest. On Asymptotic Complexity of
the Optimum Golomb Ruler Problem:
From Established Stochastic Methods
to Self-Avoiding Walks. Proceedings
of the IEEE Congress on Evolutionary
Computation, June 5-8, Donostia – San
Sebastian, Spain, 2017. For a reprint,
see https://people.engr.ncsu.edu/

brglez/publications.html

case, we found that the variables we count, such as throws in this

paper, will have near-geometric or near-exponential distributions.

For a detailed side-by-side comparison of results under two stop-

ping criteria, fptC and fptR, see Figure 12. The differences in empir-

ical cumulative distribution function (ECDF) under the two stopping

criteria increase dramatically with increasing the number of throws;

ECDF under fptR is clearly near-exponential. The pattern of 5 mean

value points for the asymptotic number-of-throws model under fptR

relates directly to 5 points displayed in Figure 2 for 1 ≤ k ≤ 5.

III.4 Three needle-type solvers stopping under fptC/fptR

Experiments with solver darts have provided a method for new

experiments and performance comparisons with solvers needles1,

needles2, needles3.
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-----------

darts, fptC (censoredCnt = 2 @10^7)

median mean stDev SE cVar max2mean min max

throws 8457 116606.8 511430.0 51662 4.39 31.3 452 3654750

darts, fptR (censoredCnt = 0)

median mean stDev SE cVar max2mean min max

throws 6328 10174.5 10037.7 1004 0.99 5.86 452 59664

restarts 13 21.5 22.2 2.2 1.03 6.09 0 131

--------------

needles1, fptC (censoredCnt = 1 @10^7)

median mean stDev SE cVar max2mean min max

throws 9896 63991.2 164914.5 16575 2.58 17.3 355 1105367

needles1, fptR (censoredCnt = 0)

median mean stDev SE cVar max2mean min max

throws 4615 6986.4 6546.2 654 0.94 4.3 355 29820

restarts 12 18.7 18.4 1.8 0.99 4.4 0 83

--------------

needles2, fptC (censoredCnt = 0)

median mean stDev SE cVar max2mean min max

throws 2707 37552.7 159768.1 15977 4.26 32.4 355 1215393

needles2, fptR (censoredCnt = 0)

median mean stDev SE cVar max2mean min max

throws 2130 3230.5 3281.1 328 1.02 6.7 355 21655

restarts 5 8.1 9.2 0.9 1.14 7.4 0 60

--------------

needles3, fptC (censoredCnt = 1 @10^7)

median mean stDev SE cVar max2mean min max

throws 1375 124649.4 843521.1 84777 6.77 66.1 275 8240547

needles3, fptR (censoredCnt = 0)

median mean stDev SE cVar max2mean min max

throws 550 693.0 572.4 57 0.83 4.4 275 3025

restarts 1 1.5 2.1 0.2 1.37 6.6 0 10

Table 6: A subset summary of statistics
from a total of 5 ∗ 4 ∗ 2 ∗ 100 = 4000
experiments with five target values of
π̂k (3.1, 3.14, 3.142, 3.1416, 3.14159), four
solvers (darts, needles1, needles2,
needles3), under two stopping criteria
(fptC, fptR), and 100 random seeds.
The subset is of size 800 for the target
value of 3.14159, i.e. for k = 5.

sample size for each statistics
N = 100 – censoredCnt

standard error
SE = stDev/sqrt(N-1)

coefficient of variation
cVar = stDev/mean

outlier coefficient
max2mean = max/mean

If the distribution of throws or
restarts follows the exponential
distribution, the following ratios are
invariant:

median/mean = 0.6931

stDev/mean = 1

max/mean <= 10 ‘almost surely’
(i.e. with probability of 0.99995)

Each solver considers five target values of π̂k, 1 ≤ k ≤ 5 :

{3.1, 3.14, 3.142, 3.1416, 3.14159}

and stops under fptC/fptR criteria.

Statistics in Table 6 summarize such experiments for the case of

k = 5, i.e. for the target value of 3.14159. For completeness, the table

includes the solver darts. A quick review of these statistics leads to

the following observations about the random variable throws:

• stopping under fptR, ratios median/mean, stDev/mean, max/mean

support the hypothesis that the distribution of throws follows the

exponential distribution – regardless of the solver!

• stopping under fptC, distribution of throws has a heavier tail than

the exponential distribution – regardless of the solver!

Results that extend the side-by-side comparisons under two stopping

criteria for darts in Figure 12 are depicted for needle-type solvers

in Figure 13. The results reported for fptC are based on a sample

size of 100, the results reported for fptR, in ECDF and in asymptotic
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Figure 13: Experiments with three
solvers under fptR and fptR.
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model, are based on a sample size of 11 ∗ 100 = 1100; 11 is the num-

ber of replicates. The dispersed values of throws are marked with

symbol ×, the mean value of each replicate are marked with sym-

bol •, the mean value of all 11 replicates is marked with symbol ⊠.

The minimal number of throws that range from 355 to 275 in the

respective ECDFs have been discussed in Table 5.

Additional statistics about experiments that involve 11 replicates

and the sample size of 11 ∗ 100 = 1100 are summarized in Table 7.

-----------

darts, fptR (censoredCnt = 0)

mean stDev

throws 8565.4 7142.2 min

throws 9419.7 9256.7 median

throws 9445.2 9265.0 mean*

throws 10454.8 10147.9 max

--------------

needles1, fptR (censoredCnt = 0)

mean stDev

throws 6897.7 7272.2 min

throws 8271.5 8719.2 median

throws 8199.2 7998.6 mean*

throws 9205.2 9279.3 max

--------------

needles2, fptR (censoredCnt = 0)

mean stDev

throws 2815.2 2569.0 min

throws 3273.1 3060.3 median

throws 3338.9 3191.9 mean*

throws 4132.2 4022.5 max

--------------

needles3, fptR (censoredCnt = 0)

mean stDev

throws 739.8 518.1 min

throws 767.3 584.1 median

throws 784.8 587.7 mean*

throws 847.0 550.9 max

Table 7: Experiments with four solvers
under termination criterion fptR and
the target value π̂k = 3.14159, i.e. with
k = 5 decimal digits. Each sample
is based on 100 random seeds and
replicated 11 times. The total sample
size for each solver is thus 1100. The
rows min, median, max report values
of mean and standard deviations
from the selection of 11 replicas, each
replica with sample size of 100. The
rows mean* report values of mean and
standard deviations computed from
1100 samples contributed by 11 replicas.
Plots of ECDFs and asymptotic models
for each solver in Figures 12, 13 are
based on 1100 samples contributed by
all 11 replicas. Similarly, the summary
of mean and standard errors in Table 11

are based on 1100 samples for each
solver.

The main purpose in introducing 11 replicates to experiments under

the fptR stopping criterion is to convey a measure of reproducibility

and precision for each solver. While each solver is returning results

that approach the true target value of π, the rates of convergence

towards this value differ significantly except for darts and needles1

when sample size ≤ 100. In this context, statistics summarized in

Table 6 can only be associated with an instance of a replicate with

sample size of 100 under an initial seed value of 1215.

Before proceeding to summarize the result with our four stochastic

solvers, we draw attention to the pattern of results with the BPP

formula, observed in Figure 2. The pattern of particular interest are

five points, for k = 1, 2, 3, 4, 5 versus the number of required terms

to approximate π̂ as

{3.1, 3.14, 3.142, 3.1416, 3.14159}

Two terms are required to approximate 3.1 or 3.14 respectively. How-

ever, the third term alone approximates 3.142, 3.1416, 3.14159. Now,

review the mean values of throws associated with k = 3, 4, 5 in

Figures 12, 13:

darts needles1 needles2 needles3

k throws throws throws throws

-- ------ ------ ------ ------

3 3358.1 7292.1 631.3 667.8

4 2283.4 4705.3 1766.1 743.1

5 9445.2 8199.2 3338.9 784.8

We can argue that we are observing a pattern similar to Figure 2: for

each solver, the mean value of throws for k = 5 is a bound for the

expected mean value for k < 5. However, the predictive accuracy of

the asymptotic model based on k = 5 cannot be compared with the

empirical model based on k = 15 in Figure 2.

IV. Aggregates of Mean First-Passage-Times with Four Solvers

All that remains is to aggregate into a single figure, Figure 14,

the most important empirical results reported in several figures and

tables earlier: Figures 12, 13, and Tables 6, 7.

The left side of Figure 14 depicts, for each solver, the empirical

cumulative distribution functions (ECDFs) for the target value of
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same stopping criterion: fptR (first-
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On the left, we depict empirical
cumulative distribution functions
(ECDFs) for the target value of 3.14159

(k = 5 decimal digits). On the right
we depict the asymptotic model that
relates the mean number of throws
to the number of decimal digits that
approximate the value of π.

3.14159 (k = 5 decimal digits). The summary of statistics in Table 6

supports the hypothesis that the distribution of throws follows the

exponential distribution – regardless of the solver.

The right side of Figure 14 depicts, for each solver, the asymptotic

model that relates the mean number of throws to the number of

decimal digits that approximate the value of π. As explained in the

closing paragraph of preceding subsection, the predictive accuracy

of the asymptotic model based on k = 5 cannot be compared with

the empirical model based on k = 15 in Figure 2. A case in point is

the comparison of the mean value of throws for solvers darts and

needles1:

from ECDF: mean(darts) > mean(needles1);

from model: mean(darts) < mean(needles1).

All we can say at this point that additional experiments with k > 5

are needed to improve the accuracy of the predictive model.

V. Summary and Conclusions

The introductory section of this paper makes an assertion

that

... insights gained during the follow-up lecture could well provide a

formal framework for rigorous performance testing of all current and

any future stochastic optimization solvers. The goal of this paper is to

provide a foundation for such framework.

The twenty pages that follow, including the appendix, bring together

not only the quest for π from two very different directions: from

closed-form fomulas to stochastic methods; they also raise new op-

portunities offered by the very formulation of the stochastic solvers

in this paper. The methodology we use to critically examine the role
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of termination criteria when deciding the trade-offs in their design

can be ported to any new stochastic solver, be it in continuous or in

discrete domains.

Random restarts under uncensored first-passage time

stopping criterion is one of the heuristics we have used to achieve

state-of-the-art solutions for a number of hard combinatorial prob-

lems21. There is every reason to believe that by adapting and adopt-

21 Borko Bošković, Franc Brglez, and
Janez Brest. Low-Autocorrelation
Binary Sequences: On Improved Merit
Factors and Runtime Predictions to
Achieve Them. Applied Soft Computing
Journal – Elsevier, 2017; and Franc
Brglez, Borko Bošković, and Janez
Brest. On Asymptotic Complexity of
the Optimum Golomb Ruler Problem:
From Established Stochastic Methods
to Self-Avoiding Walks. Proceedings
of the IEEE Congress on Evolutionary
Computation, June 5-8, Donostia – San
Sebastian, Spain, 2017. For a reprint,
see https://people.engr.ncsu.edu/

brglez/publications.html

ing these principles for stochastic solvers in a number of different

problem domains, further improvements will be observed. In partic-

ular, adopting the quantized error as the target value formulated in

Figure 8, converging to 0, will further accelerate the solver conver-

gence towards the best-known-values for the problems at hand. Such

approaches are under test not only in the continuous domain22 but

22 Franc Brglez. On Uncensored Mean
First-Passage-Time Performance Ex-
periments with Multi-Walk in R

p: a
New Stochastic Optimization Algo-
rithm. Invited talk, IEEE Proc. 7th Int.
Conf. on Reliability, InfoCom Technolo-
gies and Optimization (ICRITO’2018);
Aug. 29–31, 2018, Amity University,
Noida, India, 2018. For a preprint,
see https://people.engr.ncsu.edu/

brglez/publications.html

also in a number of discrete domains23.

23 Franc Brglez. On Uncensored Global
Stochastic Optimization in R

p/D
p and

the Efficiency of Multi-Walk Algorithms
under Tableau Formulations. Work
in progress. For updates, see https:
//people.engr.ncsu.edu/brglez/

publications.html, 2018

Future Work

Due to the limited scope of this class project, empirical results in

this paper are limited to approximating the asymptotic model of

π̂ to 5 decimal digits only. Unless new stochastic solvers are in-

vented, the current approximations of π̂5 = 3.14159 with the four

stochastic solvers will stand, for the sample size of 1100, with the

estimated uncensored mean first-passage-time number of throws at

748.8, 3338.9, 8199.2, 9445.2 and the respective standard errors at

17.7, 96.2, 241.2, 279.4. Future work may consider a computational

project that will extend the asymptotic model of π̂ to k > 5 deci-

mal digits! The R-code and python-code is available on request. For

computations with k > 8, re-coding in C is recommended.
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VI. Appendix: on limitations of the stopping criterion plain

Before turning our attention to the title of this appendix, we

pause by paying homage to individuals and organizations who,

circa 1950, began concerted efforts to reach a common agreement or

understanding as to the meanings and consequences of using the terms

such as “precision” and “accuracy”27.

27 Prepared by M. Carroll Croarkin,
http://nvlpubs.nist.gov/nistpubs/

sp958-lide/129-131.pdf

Subsequently, the paper by Churchill Eisenhart28 became the preemi-

28 Churchill Eisenhart. Realistic evalu-
ation of the precision and accuracy of
instrument calibration systems. J. of
Research of the NBS, 67:161–187, 1963

nent publication on the subject.

Before getting a step closer to additional context and motivation

for this appendix, here are the questions asked by Stanley Rasberry29:

29 Stanley D Rasberry. Accuracy in
Analysis: The Role of Standard Refer-
ence Materials. J. of Research of the NBS,
93(3):213–216, 1988

What one question haunts the best of analytical chemists when their

day’s work is done? Four of the main questions that arise regarding

any analytical method are:

– Is it sensitive enough for the level of detection required?

– Is it free of interferences for the desired analyte?

– Is it precise, so that the results are reproducible?

– Is it accurate, so that the results approach true values?

Such questions are now being asked in undergraduate laboratories30

30 A. Checchetti and A. Fantini. Ex-
perimental Determination of Planck’s
constant using Light Emitting Diodes
(LEDs) and Photoelectric Effect. World J.
of Chemical Ed., 3(4):87–92, 2015

where Planck’s constant is being measured with relative accuracy

and precision. See Table 8 for updates on values of the Planck’s con-

stant: 8-significant digits are reported with certainty, with estimated

standard deviation of 81 at digits 9 and 10, respectively.

Planck constant (h)

------------------

Value

6.626 070 040 x 10-34 J s

Standard uncertainty

0.000 000 081 x 10-34 J s

Concise form

6.626 070 040(81) x 10-34 J s

Table 8: Plank’s constant as posted by
NIST in 2014. The standard uncertainty
u(y) of a measurement result y is the
estimated standard deviation of y. See
https://physics.nist.gov/cgi-bin/

cuu/Value?h%7Csearch_for=universal_

in!

According to web-based resources posted under the Cam-

bridge Energy Landscape Database31, Lennard-Jones clusters have

31 http://doye.chem.ox.ac.uk/jon/

structures/LJ/ and the subdirectory
on Lennard-Jones Clusters, http:
//www-wales.ch.cam.ac.uk/CCD.html

become a much-studied test system for global optimization methods

designed for configurational problems. For an example of a solution,

relevant in the context of this paper, see Table 9.

N Energy

25 -102.372663 (Hoare)

solution

0.6884429539 -0.4902635898 -1.4414708801

1.5396551009 -0.2813139477 -0.5852156965

0.2992192805 -0.8759083275 1.3497840799

....

....

0.1856536312 -0.1342268229 0.6014654858

0.0479861996 0.5490057018 -0.1816691063

Table 9: Global minimum for a
Lennard-Jones cluster of N = 25
atoms, posted under http://doye.
chem.ox.ac.uk/jon/structures/LJ/

Notably: the value of the global
optimum is specified with 9 significant
digits, the xyz solution coordinates are
specified with 11 significant digits!

Notably, to find the minimum energy and optimum balance of

forces between N ≤ 150 atoms in a LJ-cluster we need to express not

only the optimum energy with accuracy of 9 significant digits but

also the xyz solution coordinates with 11 significant digits.

The takeaway from these paragraphs is that both the accuracy and

the precision matter when we design and interpret results of lab-

based experiments and also computational experiments that rely on 9

to 11 significant digits. Random variables related to solver runtime or

counts such as the number of throws will have, in most cases, near-

exponential distribution or worse. Sufficient computational resources

are required so that statistics used to evaluate solver performances

are based strictly on samples that are not censored.

We now re-examine the ambiguities that can arise with the

stopping criterion plain as outlined in Figure 9 earlier. This crite-

rion is the basis for computational experiments whose goal is to rank

the performance of stochastic optimization solvers: take S solvers,

P problem instances, N random seeds, run each solver under a fixed
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mean CI95 mean CI95 paired

throws darts darts needles3 needles3 darts - needles3 p-value

1e1 308400.000 297503.8 314069.026 313307.5 -5669.03 0.30558

319296.2 314830.6

1e2 312960.000 309979.3 314283.994 313996.7 -1323.99 0.38240

315940.7 314571.3

1e3 313648.000 312588.8 314122.606 314038.1 -474.61 0.37761

314707.2 314207.1

1e4 314161.600 313803.2 314155.048 314128.6 6.55 0.97122

314520.0 314181.5

1e5 314106.760 314011.0 314155.082 314146.4 -48.32 0.32102

314202.5 314163.7

Table 10: This is a summary of a repli-
cated experiment, based on the one in
Figure 9. While the stopping criterion
plain remains unchanged, we consider
only the solvers darts and needles3

and monitor the first 9 decimal digits
of π only. To make comparisons easier
to relate with typical solvers, we rescale
the value of π by multiplicative factor
of 1e5. The best-known-value, based
on rescaled value of π, rounded to 5
significant digits would thus become
314159.

runtime limit and then, for each solver, tabulate distances from in-

stance BKVs (best-known-values) and a number of related statistics.

This is precisely what the experiment in Figure 9 was expected to

accomplish for the four stochastic solvers and with the problem in-

stance defined by the best-known-value of π.

Ambiguities with experimental results under the stopping cri-

terion plain have been observed, on a much larger scale, only re-

cently32: Figure 2 of this paper tallies successes with 18 solvers over

32 Katharine Mullen. Continuous Global
Optimization in R. Journal of Statistical
Software, Articles, 60(6):1–45, 2014

all 100 runs for each of 48 objective functions. A verbatim quote: “A

‘success’ was defined as a solution less than 0.005 more than the min-

imum of the objective function between the default bounds." Briefly,

solutions where BKV ≤ solution value < BKV + 0.005 are accepted,

solutions not in this range are considered, in our context, as censored.

In other words, the percentage of censored results ranges from

(4800 - 3800)/4800 = 21% to (4800 - 1200)/4800 = 75%. If the er-

ror tolerance that defines a ‘success’ is reduced from 0.005 to 0.0005,

the percentage of censored results in Figure 2 will get closer to 100%.

Results in Figure 9 are replicated in a new experiment and

summarized in Table 10. In comparison with Figure 9, the ambigui-

ties have not changed, they are just better documented. Given these

statistics, the mean values of solvers darts and needles3 are indeed

equivalent under the null hypothesis – and contrary to our intuitive

expectations. We argue that the results reported under the stopping

criterion of plain are ambiguous because we have not asked the right

question before we decided to compare performance merits of two

stochastic solvers. The right question is this: “what is the uncensored

mean number of required throws for each solver to reach the same target

range?”

Unambiguous answers to this question are summarized in Table 11;

all statistics are based on four near-exponential empirical cumulative

distribution functions (ECDFs) in Figure 14. The empirical results in

this table provide the template for rigorous evaluation of stochastic

optimization solvers under test currently33.

33 Franc Brglez. On Uncensored Mean
First-Passage-Time Performance Ex-
periments with Multi-Walk in R

p: a
New Stochastic Optimization Algo-
rithm. Invited talk, IEEE Proc. 7th Int.
Conf. on Reliability, InfoCom Technolo-
gies and Optimization (ICRITO’2018);
Aug. 29–31, 2018, Amity University,
Noida, India, 2018. For a preprint,
see https://people.engr.ncsu.edu/

brglez/publications.html

sampleSize = 1100

solver mean(throws) SE(throws)

---------- ------------ ----------

darts 9445.1 279.4

needles1 8199.2 241.2

needles2 3338.9 96.2

needles3 587.7 17.7

Table 11: The mean number of required
throws for each solver to reach the
target value of round(π, 5) = 3.14159.
These values are based on 1100 uncen-
sored samples, generated under the fptR

stopping criterion.
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