Throwing Darts and Needles under Four Configurations: the Uncensored Mean First-Passage-Time of Hitting the k Decimal Digits Value of π

Franc Brglez, Edward Chan, Haiyan Deng, Sanket Goutam, Jun Ma, George Mathew, Yiqi Tang

Franc Brglez
Edward Chan
Haiyan Deng
Sanket Goutam
Jun Ma
George Mathew
Yiqi Tang

brglez@ncsu.edu Computer Science, NC State University schan3@ncsu.edu Physics and Computer Science, NC State University hdeng4@ncsu.edu Statistics, NC State University sgoutam@ncsu.edu Computer Science, NC State University jma17@ncsu.edu Statistics and Bioinformatics, NC State University george2@ncsu.edu Computer Science, NC State University ytang22@ncsu.edu Statistics, NC State University

Abstract

Throwing needles onto a lined sheet of paper can be considered as the first instance of a stochastic solver that approximates the value of π as reported by Laplace in 1812. This paper examines four distinct stochastic solvers and three stopping criteria to approximate the value of π : darts, needles 1 , needles2, needles3. There is no doubt that increasing the number of throws improves the approximation of π. Also, as a theoretician has already shown for the solver needles $1,9.008 \mathrm{e}+11$ is the number of required throws before we can accept with 95% confidence that the correct value of the 5 -th decimal place is 9 , i.e. the value of π rounded to 5 -decimal digits is $\hat{\pi}_{5}=3.14159$. Results in this paper are empirical: in order to approximate $\hat{\pi}_{5}=3.14159$ with the four stochastic solvers, the minimal number of required throws are $275,355,452$ and the estimated uncensored mean first-passage-time number of throws are 748.8, 3338.9, 8199.2, 9445.2. For the sample size of 1100, the standard errors associated with these mean values are 17.7, 96.2, 241.2, 279.4.

NOTE: The draft of this manuscript has been typeset in LETEX tufte-handout document class (https://ctan.org/pkg/tufte-latex). This class is based on Edward R. Tufte. Beautiful Evidence. Graphics Press LLC, 2006. (https://www.edwardtufte.com/tufte/). The 24-page manuscript features a number of sidenotes and R-generated graphics with empirical asymptotic results for the four stochastic solvers under three stopping criteria. Unfortunately, there are latex issues with posting this version under arxiv and we ask the reader to download the current manuscript (version of December 1, 2018) from this link:
https://people.engr.ncsu.edu/brglez/publications/OPUS2-2018-pi-tufte-Brglez.pdf
Currently, only the abstract page is posted under arxiv.org. A complete version of manuscript which will be compatible with latex guidelines under arxiv.org will be posted under
https://arxiv.org/ when it becomes available.

I. Introduction

In 1777, Buffon formulated and solved the problem of finding the probability that a needle of length L thrown onto a horizontal plane ruled with parallel straight lines spaced by a distance $d>L$ will intersect one of these lines. In 1812, Laplace saw this problem in a new light which resulted in a new method of evaluating π. He measured the probability of intersection by throwing the needle onto the ruled paper a very large number of times, recording the fraction of throws resulting in an intersection of the needle with a line. In other words, Laplace applied the frequency estimate of probability. Today, the use of a needle and a lined sheet of paper can be considered as the first instance of a stochastic solver that approximates the value of π as reported by Laplace in 1812.

Initially, introducing Laplace's experiments as the motivational lecture of the project-oriented course on stochastic optimization appeared as the right choice. However, it soon became apparent that additional questions and insights gained during the follow-up lecture could well provide a formal framework for rigorous performance testing of all current and any future stochastic optimization solvers. The goal of this paper is to provide a foundation for such framework.

I. 1 About π and the number of decimal digits

The fascination with digits of π has a long history. Examples of π values are listed in Figure 1; details are being explained next.
(a) a 20-decimal digit value as reported in Wikipedia; ${ }^{1}$
(b) 100,000 digits of π - as reported by a π aficionado; ${ }^{2}$
(c) a 22-decimal digit value of π which is in error after the 15 -th decimal digit. We can replicate this error with the commands

```
> options(digits=22) ; pi
```

[1] 3.141592653589793115998
under the R-shell. ${ }^{3}$ We take this limitation into account when programming in R by relying on the 15 -decimal digit value of π.
(d) The 15 -decimal digit value, $\pi_{15}=3.141592653589793$, is also used by NASA for the highest accuracy calculations during interplanetary navigation. Paraphrasing the NASA report: with respect to Voyager 1, about 12.5 billion miles away from Earth, the error in calculating the distance to the Voyageur is about 1.5 inches. 4

I. 2 Publication Highlights

The scope and the number of citations about π is overwhelming. The informative and popular book by Petr Beckmann is still in print ${ }^{5}$, albeit not without errors in history and mathematics ${ }^{6}$. On the
(a) 3.1415926535897932384626433
(b) $3.141592653589793238462643383279 \ldots$
(c) 3.141592653589793115998
(d) 3.141592653589793

Figure 1: The digits reported for the value of π. In case (c), digits beyond the 15 -th decimal digit are in error. See the adjacent text for more details.
${ }^{1}$ Wikipedia, https://en.wikipedia. org/wiki/Pi
${ }^{2} 100,000$ digits of π, http://www. geom.
uiuc.edu/~huberty/math5337/groupe/
digits.html
${ }^{3}$ The R Project for Statistical Com-
puting, https://www.r-project.org/
${ }^{4}$ From jpl.nasa.gov/edu/,
March 16, 2016, https://www. jpl.nasa.gov/edu/news/2016/3/16/ how-many-decimals-of-pi-do-we-really-need/
${ }^{5}$ Petr Beckmann. A History of Pi, Second Edition. Golem Press, Boulder, Colorado, 1971
${ }^{6}$ Henry W. Gould, AMS Reviews and Descriptions of Tables and Books, Math. Comp. 28 (1974), 325-339, http://www.ams.org/journals/mcom/ 1974-28-125/S0025-5718-74-99692-6/ S0025-5718-74-99692-6.pdf
other end of a spectrum, a formal mathematical as well as historical perspective on π is available in a recent monograph ${ }^{7}$. An amazing closed-form expression, now known as the BPP formula, was discovered only recently ${ }^{8}$.

This formula, reproduced in Eq. 2 and analyzed by way of a first-passage-time experiment in Figure 2 provides the framework for the construction of this paper. Whereas the experiments in Figure 2 establish in linear time the minimum number of terms to be included in the formula in order to compute π with exactly k decimal digits, we apply the same principle to experimentally determine the mean first-passage-time for four stochastic solvers. Instead of counting the required number of terms in Eq. 2, we count the required number of throws (of darts or needles) onto a specific geometric configuration.

Articles that are also a source of relevant concepts and notation used in the paper include this list ${ }^{9}$.

In 1901, Lazzarini performed a series of needle-throwing experiments and reported an astonishingly accurate value for π^{10}. The experiment is now considered a hoax ${ }^{11}$.

Conceptual errors in evaluation of geometric probabilities related to π have been discovered and corrected ${ }^{12}$.

Additional sections are organized as follows:

II. Background and Motivation:

two formulas about π, formalizing the notation, definitions of four stochastic solvers that converge, with increasing the number of throws, to rounded values of π_{k}, with k denoting the number of decimal digits.

III. Stopping the Throws and Counting the Misses:

R-code templates that implement three criteria to stop the throws, experiments with four stochastic solvers that generate empirical cumulative distribution functions (ECDFs) and asymptotic models for each solver under three stopping criteria.
IV. Aggregates of Mean First-Passage-Times with Four Solvers

V. Summary and Conclusions

VI. Appendix:

On Limitations of the Stopping Criterion plain

II. Background and Motivation

We organize this section into five subsections:
(1) formulas that converge to π;
(2) notation and the asymptotic first-passage experiment;
(3) on four stochastic solvers for π;
(4) on asymptotic variances of stochastic solvers;
(5) on minimal number of required throws.
${ }^{7}$ Jonathan M. Borwein. The Life of Pi: From Archimedes to ENIAC and Beyond, chapter From Alexandria, Through Baghdad, pages 531-561. Springer, Berlin, Heidelberg, 2014
${ }^{8}$ David Bailey, Peter Borwein, and Simon Plouffe. On the rapid computation of various polylogarithmic constants. Mathematics of Computation of the American Mathematical Society, 66(218):903-913, 1997
${ }^{9}$ N. T. Gridgeman. Geometric Probability and the Number Pi. Scripta Mathematica, 25:183-195, November 1960; Michael D. Perlman and Michael J. Wichura. Sharpening Buffon's Needle. The American Statistician, 29:157-163, November 1975; Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jorg Waldvogel. The SIAM 100digit challenge: a study in high-accuracy numerical computing, volume 86. SIAM, 2004; and Enis Sinikrasan. Throwing Buffon's Needle with Mathematica. The Mathematica Journal, 11, 2008
${ }^{10}$ M. Lazzarini. Un' applicazione del calcolo della probabilità alla ricerca sperimentale di un valore approsimato di Pi. Periodico di Matematica, 4:140-143, 1901
${ }^{11}$ N. T. Gridgeman. Geometric Probability and the Number Pi. Scripta Mathematica, 25:183-195, November 1960; and Lee Badger. Lazzarini's Lucky Approximation of Pi. Mathematics Magazine, 67(2):83-91, 1994
${ }^{12}$ Lee L Schroeder. Buffon's needle problem: An exciting application of many mathematical concepts. Mathematics Teacher, 67(2):183-186, 1974; and Barry J Arnow. On Laplace's extension of the Buffon needle problem. The College Mathematics Journal, 25(1):40-43, 1994

II. 1 Two Formulas as Solvers

In 1666, Newton, used a geometric construction to derive the formula for π^{13} :

$$
\begin{equation*}
\pi=\frac{3 \sqrt{3}}{4}+24\left(\frac{1}{12}-\frac{1}{5 \cdot 2^{5}}-\frac{1}{28 \cdot 2^{7}}-\frac{1}{72 \cdot 2^{9}}-\frac{5}{704 \cdot 2^{11}}-\cdots\right) \tag{1}
\end{equation*}
$$

The evaluation of the first 6 terms of Eq. 1 is shown in Table 1. We find by inspection that only the fourth term rounds to correct 3 decimal digits: $\hat{\pi}_{3}=3.142$.

Formulas such as Eq. 1 have been evolving over centuries. Some of the most significant improvements are relatively recent such as the amazing BPP formula ${ }^{14}$:

$$
\begin{equation*}
\pi=\sum_{n=0}^{\infty}\left(\frac{4}{8 n+1}-\frac{2}{8 n+4}-\frac{1}{8 n+5}-\frac{1}{8 n+6}\right)(1 / 16)^{n} \tag{2}
\end{equation*}
$$

The first three values of $\hat{\pi}$ expressed by Eq. 2 are listed in Table 2. For the third value, $\hat{\pi}=3.1415874$, we find by inspection that this value rounds correctly to values of π with 3,4 , or 5 decimal digits: 3.142, 3.1416, or 3.14159.

II. 1 Notation and the Asymptotic First-Passage-Time Experiment

The notation in Table 3 and Eq. 9 supports the comprehensive asymptotic performance experiment summarized in Figure 2 as well as all other experiments in this paper. This experiment not only establishes the asymptotic convergence rate of Eq. 2; it also serves as a template for the follow-up experiments with four stochastic solvers. In Eq. 2, we count the number terms that are required before we can observe a solution that converges to $\hat{\pi}_{k}=\operatorname{round}(\hat{\pi}, k)$ where k is the number of decimal digits. With any of our stochastic solvers, we count the number of throws (of darts or needles) that are required before we can observe, for the first time, the value of $\hat{\pi}_{k}$ fall within the range of $\pi_{k} \pm \Delta_{k}$.

The unrounded errors shown as differences $\hat{\pi}-\pi_{15}$ in Tables 1 and 2 are useful indicators about the rate of convergence towards π_{15}. However, we shall rely on definitions in Table 3 and definitions grouped with Eq. 9 to describe results of the experiment in Figure 2.

$$
\begin{align*}
\pi_{15} & =3.141592653589793 \tag{3}\\
\pi_{k} & =\operatorname{round}\left(\pi_{15}, k\right) \quad \text { (the target value) } \tag{4}\\
\Delta_{k} & = \pm 0.5 / 10^{k} \tag{5}\\
\hat{\pi} & =\text { approximation of } \pi \text { by a solver } \tag{6}\\
\hat{\pi}_{k} & =\operatorname{round}(\hat{\pi}, k) \tag{7}\\
\epsilon_{k} & =\hat{\pi}-\pi_{k} \tag{8}\\
\epsilon_{k k} & =\operatorname{round}\left(\epsilon_{k}, k\right) \tag{9}
\end{align*}
$$

There are two phases of the experiment in Figure 2. In Phase 1, we implement the R-function fg_pi_BPP_asym exactly as shown. When

numTerms	piHat	piHat - pils
1	1.29904	-1.84255
2	3.29904	0.15745
3	3.14873	0.00714
4	3.14204	0.00044
5	3.14138	-0.00021
6	3.14130	-0.00029

Table 1: Convergence to π_{15} as we increase the number of terms in Eq. 1 .
${ }^{14}$ David Bailey, Peter Borwein, and Simon Plouffe. On the rapid computation of various polylogarithmic constants. Mathematics of Computation of the American Mathematical Society, 66(218):903-913, 1997

numTerms	piHat	piHat - pi15
1	3.1333333	-0.008259
2	3.1414225	-0.000170
3	3.1415874	$-5.26 \mathrm{e}-06$

Table 2: Convergence to π_{15} as we increase the number of terms in Eq. 2.

symbol	name	description
t	throws	number of throws (darts or needles)
t_{U}	throwsU	a limit on the number of throws before the next restart
$t_{L m t}$	throwsLmt	a limit on the total number of throws
m	misses	number of misses (darts or needles)
h	hits	number of hits $(=t-m)$
ρ	restarts	number of restarts, incremented after each completion of t_{U} throws
k	decDigits	number of decimal digits used to round the value of $\hat{\pi}$
π_{k}	pi_k	value of π rounded to k decimal digits
Δ_{k}	piTol_k	tolerance value $\left(\pm 0.5 / 10^{k}\right)$ associated with value of π_{k}
$\hat{\pi}$	piHat	approximate value of π returned by a solver
$\hat{\pi}_{k}$	piHat_k	value of $\hat{\pi}$ rounded to k decimal digits
ϵ_{k}	piError_k	error difference $=\hat{\pi}-\pi_{k}$
$\epsilon_{k k}$	piError_kk	rounded value of ϵ_{k}. Solver stops uncensored
		if $\left(\epsilon_{k k}==0\right)$ before $t<t_{L m t}$
	piNewton	solver, defined by Eq. 1
	piBPP	solver, defined by Eq. 2

Table 3: Symbols, names, and descriptions that represent key elements of
invoked, it creates the table shown in the table next to the function: the column names have been added manually. The computational flow is simple: (a) compute and save 18 terms of the BPP formula in Eq. 2, (b) for each value of decimal digit k, compute π_{k} and Δ_{k}, then increment terms of the BPP formula to iteratively compute $\hat{\pi}$, $\hat{\pi}_{k}, \epsilon_{k}$, and $\epsilon_{k k}$. There are two conditions that can stop the iterations: $\left(\epsilon_{k k}==0\right)$ or (terms $==$ termsLmt). If $\left(\epsilon_{k k}==0\right)$ before reaching (terms $==$ termsLmt), we say that the variable denoted as terms is uncensored. Otherwise, we say that the variable terms is censored. Clearly, in the context of this paper, variables that are censored cannot provide reliable information about convergence properties of any solver that returns $\hat{\pi}$ to approximate the value of π.

The book on First-Passage Processes ${ }^{15}$ explains that
... first passage underlies many stochastic processes in which the event, such as a dinner date, a chemical reaction, the firing of a neutron, or the triggering of a stock option relies on a variable reaching a specified value for the first time ...
${ }^{15}$ Sidney Redner. A Guide to FirstPassage Processes. Cambridge University Press, 2001

```
fg_pi_BPP_asym = function(decDigits=0:15)
2 {
# precompute the terms of formula piBPP
    piTerms = NULL ; termsLmt = 18
    for (i in 1:termsLmt) {
        n = i - 1
        piTerms[i] = (4/(8*n + 1) - 2/(8*n + 4) -
                        1/(8*n + 5) - 1/(8*n + 6))*(1/16)^n
    }
    pi15 = 3.141592653589793 ; # best-known-value for k=15
    for (k in decDigits) {
        pi_k = round(pi15, k) ;# target value
        piTol_k = 0.5/10^k
        piHat = 0 ; terms = 0
        while (1) {
            terms = terms + 1
            piHat = piHat + piTerms[terms]
            # completed piHat for 'piBPP'; begin quantization
            piHat_k = round(piHat, k)
            piError_k = piHat - pi_k
            # quantize error, break when piError_kk = 0
            piError_kk = round(piError_k, k)
            if (piError_kk == 0 ) {isCensored = FALSE ; break}
            if (terms == termsLmt) {isCensored = TRUE ; break}
        }
        cat(k, terms, piHat_k, piError_k, piTol_k, isCensored, "\n")
}
} # fg_pi_BPP_asym
```

The R-code on the left is also a template for the first-passage-time experiments with R -code that implements stochastic solvers such as shown in Figure 8. We only need to interchange variables terms and throws while maintaining the same formulation of the stopping criterion $\epsilon_{k k}==0$.

terms	piHat_k	piError_k	piTol_k
1	3	0.133	0.5
1	3.1	0.0333	0.05
2	3.14	0.00142	0.005
3	3.142	-0.000413	5e-04
3	3.1416	-1.26e-05	$5 \mathrm{e}-05$
3	3.14159	-2.61e-06	5e-06
5	3.141593	-3.55e-07	5e-07
6	3.1415927	-4.68e-08	5e-08
5	3.14159265	-4.54e-09	$5 \mathrm{e}-09$
7	3.141592654	-4.27e-10	5e-10
7	3.1415926536	-2.71e-11	$5 \mathrm{e}-11$
8	3.14159265359	-1.03e-12	$5 \mathrm{e}-12$
9	3.14159265359	-2.48e-13	$5 \mathrm{e}-13$
9	3.1415926535898	-4.80e-14	$5 \mathrm{e}-14$
10	3.14159265358979	1.33e-15	5e-15
11	3.141592653589793	0	5e-16

As we replace the variable terms implied by Eq. 2 with the random variable throws implied by throws in stochastic solvers, we argue that the iterative search as formulated with Figure 2 can also be viewed as an example of the first passage process where the stopping criterion ($\epsilon_{k k}==0$) is the event that establishes the first-passage-time either for

Figure 2: The complete R-code for an asymptotic experiment to verify the efficiency of the BPP formula in Eq. 2. The symbol $\boldsymbol{\nabla}$ denotes $\epsilon_{k k}=0$ since the error value of 0 cannot be plotted on a log-scale.
terms or throws. In this paper, we link inextricably both the notion of the uncensored variables with the notion of first-passage-time.

In Phase 2, we extend the R-code in Figure 2 to plot the tabulated values of terms versus decimal digits k and the tabulated values of ϵ_{k} and Δ_{k} versus decimal digits k. Notably, only 11 terms are required before reaching the value of π with 15 decimal digits, the most precise representation of π available in R . The asymptotic model in Eq. 10 associates with the BPP formula in Eq. 2:

$$
\begin{equation*}
\epsilon_{k}=0.2511 *(0.09977)^{k} \tag{10}
\end{equation*}
$$

This formula is the reference asymptotic model for the experiments with stochastic solvers in this project.

II. 3 On Four Stochastic Solvers for π

In contrast to solvers based on formulas that converge to value of π rapidly, the stochastic solvers we consider in this paper converge to π not only at much lower rates but we also observe significant differences in the convergence rate of each solver. The names of the four solvers have already been introduced in Table 3. We now introduce formulas for the estimated value $\hat{\pi}$ of each solver, along with companion illustrations that suggest their configuration and evaluation.

darts

Darts are thrown onto a plane featuring a circle with a unit diameter, see Figure 3. We count the number of throws t and the number of misses m defined by the event of dart not hitting the circle.
We use Eq. 11 to evaluate the estimated value of $\hat{\pi}$.

$$
\begin{equation*}
\hat{\pi}=4 *(1-m / t) \tag{11}
\end{equation*}
$$

needles1

Needles of unit length are thrown onto a plane featuring a single grid defined by parallel lines a unit distance apart, see Figure 4. We count the number of throws t and the number of misses m (blue dots) defined by the event of needle not hitting any of the lines.

We use Eq. 12 to evaluate the estimated value of $\hat{\pi}$.

$$
\begin{equation*}
\hat{\pi}=2 /(1-m / t) \tag{12}
\end{equation*}
$$

needles2

Needles of unit length are thrown onto a a plane featuring a double grid defined by a grid of unit squares, see Figure 5. We count the number of throws t and the number of misses m defined by the event of needle not hitting any of the lines.
We use Eq. 13 to evaluate the estimated value of $\hat{\pi}$.

$$
\begin{equation*}
\hat{r}=3 /(1-m / t) \tag{13}
\end{equation*}
$$

Figure 3: The darts solver.

Figure 4: The needles 1 solver.

Figure 5: The needles 2 solver.

```
needles3
```

Needles of unit length are thrown onto a a plane featuring a triple grid defined by a grid of equilateral triangles of unit height, see Figure 6. We count the number of throws t and the number of misses m defined by the event of needle not hitting any of the lines.

We use Eq. 14 to evaluate the estimated value of $\hat{\pi}$.

$$
\begin{equation*}
\hat{\pi}=3 *(4-\operatorname{sqrt}(3) / 2) /(3-2 * m / t) \tag{14}
\end{equation*}
$$

Each of the four formulas, from Eq. 11 to Eq. 14, plays an important role both in determining asymptotic variance of each solver as well as in supporting the search for the minimal number of throws that are required before either of the four solvers reaches, for the first time, the target value

$$
\hat{\pi}_{k}=\operatorname{round}(\hat{\pi}, k)
$$

where k denotes the number of decimal digits in $\hat{\pi}_{k}$.
The next two subsections provide details about the asymptotic variance and the minimal number of throws, respectively.

II. 4 On Asymptotic Variances of Stochastic Solvers

The asymptotic variances of the four stochastic solvers are summarized in Table 4. The symbol for the asymptotic variance, $\operatorname{AVar}(\hat{\pi})_{i}$, paraphrases the notation used by Sinikrasan. ${ }^{16}$. Only the variance for solver darts, $\operatorname{AVar}(\hat{\pi})_{0}=2.69$, has been derived in this paper. The variances for $\operatorname{AVar}(\hat{\pi})_{1}=5.63$ and $\operatorname{AVar}(\hat{\pi})_{2}=0.4658$ and the basis for the required number of throws, $t_{95}(\hat{\pi})_{i, k}$, originate with Gridgeman. ${ }^{17}$ The variance $\operatorname{AVar}(\hat{\pi})_{3}=0.01578$ originates with Perlman and Wichura. ${ }^{18}$ The values of $\operatorname{AVar}(\hat{\pi})_{1}$ and $\operatorname{AVar}(\hat{\pi})_{2}$ are in agreement with values derived earlier by Gridgeman.

An important question posited by Gridgeman in his 1960 paper is this: "How many casts of the needle must be made before I can confidently accept the k-th decimal place of my estimate of π ?" Using current notation, Eq. 15 below paraphrases Gridgeman's Eq. 24 for solver 1 :

$$
\begin{equation*}
2 * \sqrt{5.63 / t_{95}(\hat{\pi})_{1, k}}=0.5 / 10^{k} \tag{15}
\end{equation*}
$$

An asymptotic model, based on solutions of Eq. 15, lists the required number of throws $t_{95}(\hat{\pi})_{i, k}$ in Table 4 and in Figure 7. While we could readily verify this model for $k=1, k=2$ with solvers needles 2 and needles3, the number of required throws $t_{95}(\hat{\pi})_{1, k}$ increases rapidly.

Figure 6: The needles3 solver.
${ }^{16}$ Enis Sinikrasan. Throwing Buffon's Needle with Mathematica. The Mathematica Journal, 11, 2008
${ }^{17}$ N. T. Gridgeman. Geometric Probability and the Number Pi. Scripta

Mathematica, 25:183-195, November 1960
${ }^{18}$ Michael D. Perlman and Michael J. Wichura. Sharpening Buffon's Needle. The American Statistician, 29:157-163, November 1975

i	solver $_{i}$	$\operatorname{AVar}(\hat{\pi})_{i}$	$t_{95}(\hat{\pi})_{i, k}$
0	darts	$2.69 / t$	round $\left(16 * 2.69 * 10^{(2 * k)}, 0\right)$
1	needles1	$5.63 / t$	round $\left(16 * 5.63 * 10^{(2 * k)}, 0\right)$
2	needles2	$0.4658 / t$	round $\left(16 * 0.4658 * 10^{(2 * k)}, 0\right)$
3	needles3	$0.01578 / t$	round $\left(16 * 0.01578 * 10^{(2 * k)}, 0\right)$

Table 4: Solver-specific symptotic variances $\left(\operatorname{AVar}(\hat{\pi})_{i}\right)$ and 95% confidence bounds on required throws $\left(t_{95}(\hat{\pi})_{i, k}\right)$, rounded to k decimal digits.

k , number of decimal digits rounding the value of pi

II. 5 On Minimal Number of Required Throws

Intuitively, the number of throws that are required before a stochastic solver may reach the target value of $\hat{\pi}_{k}$ depends on the specified value of decimal digits k and the random seed. The larger the value of k, more and more throws are required. A highly conservative estimate is provided by Eq. 15: $O(900,800)$ throws are required before we can accept with probability of 95% that the 2-nd decimal place is the correct value of π.

However, if we ask, for $k=2$, "How many throws of the needle (or the dart) must be made before we will compute $\hat{\pi}_{k}$ for the first time?" we expect the required number of throws to be significantly less than 900,800 . See Table 5 for answers: e.g. 11 throws, 4 misses for needles 1 and $k=2$.

Finding the minimum required number of throws so that $\hat{\pi}=\hat{\pi}_{k}$ for $k>6$ is a hard search problem. One formulation is suggested in Table 3: encode a binary sequence of length $L \geq t_{\text {Min }_{i, k}}$ with 0's representing misses, 1 's representing hits. For needles 1 and $k=2$: there are a total $\binom{11}{4}=330$ solutions, one of them is 01111010110.

In this paper, values in Table 5 are a by-product of experiments discussed in the next section. These include the 're-discovery' of $\hat{\pi}=355 / 113$, accurate to 6 decimal places, and known since 500 AD. This approximation is attributed to Zu Chongzhi ${ }^{19}$.

Figure 7: A model that predicts the number of throws of dart or needles so that we can accept with 95% confidence that the k-th decimal place of $\hat{\pi}_{k}$ is the correct value of π.

The adjacent table summarizes results of an experiment with sampleSize $=100$, repeated for 3 different seeds for the specified number of throws and value of $k=1$ and 2 . The experiment confirms the model predictions well: the column $\mathrm{S}(\%)$ reports the percentage of successes where success denotes that the k-th decimal digit has been observed as correct. The fact that for needles 3 and $k=1$, the observed value of $\mathrm{S}(\%)$ is consistently below 95 can be attributed to Eq. 15: the equation is not being sufficiently precise when throws $=25$.

[^0]

III. Stopping the Throws and Counting the Misses

We examine three stopping criteria under the three acronyms: plain, $f p t C$, and $f p t R$. For details about each criterion and the respective R-code templates, see subsection III.1. Subsections that follow summarize a number of experiments with four solvers under each of the three stopping criteria.

III. 1 On Stopping Templates

All stochastic solvers are subject to specific stopping criteria.
To facilitate correct implementation with each solver, we use three
R-code templates in Figure 8, each implementing the solver darts:

```
plain:
    number of throws is predetermined,
fptC:
    first-passage-time without restarts,
fptR:
    first-passage-time with restarts.
```

Notably, both fptC and fptR are derived directly from the first-passage-time template that verifies the efficiency of the BPP formula in Figure 2. The formulation of the stopping criterion $\epsilon_{k k}==0$ has not changed; we only interchanged the variable terms with throws.

Table 5: Denoting k as the number of decimal digits and misses as the random variable, this table relates the rounded values of $\hat{\pi}$ to the minimal number of throws that are required before either of the four solvers may reach, for the first time, the target value

$$
\hat{\pi}_{k}=\operatorname{round}(\hat{\pi}, k)
$$

We use the word minimal to denote that the required number throws for needles3 and $k=6$ are not necessarily minimum! For problem as formulated in this paper, current computational resources are inadequate to measure uncensored performance of these stochastic solvers much beyond $k>6$ within a week of computational effort. However, Figure 2 demonstrates that using Eq. 2 to compute the value of π with high accuracy is both highly efficient and effective. The value of π with 15 decimal digits is reportedly used by NASA for the highest accuracy calculations during interplanetary navigations.

```
## solverName = darts
## stopping criterion = plain
## (stop if (throws == throwsLmt) )
#
seed = round(0.5 + le9*runif(1))
set.seed(seed) ;# initialize RNG
pil5 = 3.141592653589793
throwsLmt = le7 ;# 1e1, le2, le3, le4, ...
throws = 0 ; misses = 0
while (1) { ;# count throws
    throws = throws + 1
    x = runif(1,-1,1)
    y = runif(1,-1,1)
    if (x^2 + y^2 > 1) {misses = misses + 1}
    piHat = 4*(1 - misses/throws)
    # completed piHat for 'darts'
    piError = piHat - pil5
    if (throws == throwsLmt) {break}
}
return( c(piHat, piError, seed) )
## solverName = darts
## stopping criterion = fptC
## (first-passage-time, no restarts)
#
seed = round(0.5 + le9*runif(1))
set.seed(seed) ;# initialize RNG
pil5 = 3.141592653589793
k = decDigits
pi_k = round(pi15, k)
throwsLmt = 4*round(16*2.69*10^(2*k), 0)
throws = 0 ; misses = 0
while (1) { ;# count throws
    throws = throws + 1
    x = runif(1,-1,1)
    y = runif(1,-1,1)
    if ( }\mp@subsup{x}{}{\wedge}2+\mp@subsup{y}{}{\wedge}2>>1) {misses = misses + 1},
    piHat = 4*(1 - misses/throws)
    # completed piHat for 'darts'; begin quantization 41
    piHat_k = round(piHat, k)
    piError_k = piHat - pi_k
    # quantize and break when piError_kk = 0
    piError_kk = round(piError_k, k)
    if (piError_kk == 0) {
        isCensored = FALSE ; break
    }
    if (throws == throwsLmt) {
        isCensored = TRUE ; break
    }
}
return( c(throws, isCensored,
        piHat_k, piError_k, seed) )
```

```
## solverName = darts
## stopping criterion = fptR
## (first-passage-time, with restarts)
#
seed = round(0.5 + 1e9*runif(1))
pi15 = 3.141592653589793
k = decDigits
pi_k = round(pil5, k)
throwsLmt = 4*round(16*2.69*10^(2*k), 0)
throwsU[1] = 9
throwsU[2] = 14
throwsU[3] = 219
throwsU[4] = 219
throwsU[5] = 452
throwsU[6] = 452
throws = 0 ; restarts = -1
while (1) { ;# count restarts
    restarts = restarts + 1
    set.seed(seed) ;# initialize RNG
    throws2 = 0 ; misses2 = 0
    while (1) { ;# count throws
        throws2 = throws2 + 1
        x = runif(1,-1,1)
        y = runif(1,-1,1)
        if ( }\mp@subsup{x}{}{\wedge}2+\mp@subsup{y}{}{\wedge}2 > 1) {misses2 = misses2 + 1}
        piHat = 4*(1 - misses2/throws2)
        # completed piHat for 'darts'; begin quantization
        piHat_k = round(piHat, k)
        piError_k = piHat - pi_k
        # quantize and break when piError_kk = 0
        piError_kk = round(piError_k, k)
        if (piError_kk == 0) {
            isCensored = FALSE ; break
        }
        if (throws2 == throwsU[k]) {
            isCensored = TRUE ; break
        }
    }
    throws = throws + throws2
    if (!isCensored) {break}
    if (throws == throwsLmt) {
        isCensored = TRUE ; break
    }
    # new seed for the next restart
    seed = round(0.5 + le9*runif(1))
}
return( c(throws, restarts, isCensored,
    piHat_k, piError_k, seed) )
```


III.2 Experiments with four solvers stopping under plain

The stopping criterion plain is the default stopping criterion for most experiments with stochastic solvers today. Its distinguishing feature is simplicity: one needs only to count the throws (or runtime in seconds) and stop the iterations upon reaching the predetermined number of throws or seconds. However, when used to test perfor-

Figure 8: Snippets of R code that implement three stopping criteria for the stochastic solver darts: plain: number of throws is predetermined, fptC: first-passage-time without restarts, fptR: first-passage-time with restarts.

The same stopping criteria apply to other solvers.
mance of two or more solvers, interpretation of observed results may become ambiguous. We demonstrate this ambiguity with a series of experiments indexed by
throws \times solvers \times seeds
where, expressed in R-code and for $n=$ sampleSize:

$$
\begin{aligned}
& \text { throws }=c\left(10^{1}, 10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7}\right) \\
& \text { solvers }=c(\text { darts, needles1, needles2, needles } 3) \\
& \text { seeds }=\operatorname{round}(1 e 9 * \operatorname{runif}(n=100,0))
\end{aligned}
$$

These experiments produce 2800 estimates of $\hat{\pi}$. Several views of these experiments are depicted in Figures 9 and 10. We summarize them next.

At a first glance, the solver performance ambiguities in Figure 9 may appear unexpected. Table 4 lists asymptotic variances of four solvers, with needles3 exibiting a variance that is two orders of magnitude below darts. And yet for throws $=10^{5}$, both solvers are returning mean values of $\hat{\pi}$ with nearly the same error, regardless of the reference value of π_{k} we use: 3.142, 3.14159, or 3.141592653589793 (not shown). Based on the aymptotic variances of four solvers in Table 4, the expected ranking of solvers,

$$
\text { needles3 }>\text { needles2 }>\text { darts }>\text { needles1 }
$$

is being observed for several value of throws - but not for all values. On the other hand, before comparing merits of any two stochastic solvers, the question we should ask is this: "what is the mean number of required throws for each solver to reach the same target range?" This question is being addressed with the first-passage-time stopping criteria $f p t C / f p t R$ in the follow-up sections. For additional arguments that can and do arise when we use plain as the stopping criterion, see the Appendix.

Buffon's needles experiments at the top of Figure 10 depict views that are as expected under more traditional analysis. As we increase the number of throws beyond 10^{4} we gain better insights by measuring error values rather than values of $\hat{\pi}$ directly. Notably, the plot that depicts sample standard deviation is in a remarkable agreement with predictions of asymptotic variances in Table 4. The histogram classifies 2800 estimates of $\hat{\pi}$ into five categories, defined by the number of decimal digits k. This histogram also reveals a number of useful observations that offer a modicum of explanation for the ambiguities observed in Figure 9: (1) as $k \rightarrow 1$, solvers appear more and more equivalent; (2) as $k \rightarrow 5$, differentiation between solvers increases dramatically. For errors below $5 e-06$, the tabulated frequency counts in the histogram can also be verified in the adjacent scattergram: $0+1+1=2$ observations for darts, $1+0+0=1$

Figure 9: Significant ambiguities can arise when we evaluate the performance of four stochastic solvers under a predetermined number of throws (or a predetermined runtime). Later in the paper we demonstrate that under the first-passage-time stopping criterion, the solver needles3 is unambiguously the significantly better solver in comparisons to other solvers. Under the tests shown here, we cannot make such conclusions with high confidence. What reference value should we choose to measure the error of the reported mean value $\hat{\pi}$, how should we chose the 'best' number for throws so we can reliably evaluate the performance of four solvers?

These two web sites simulate interactive demonstrations of throwing Buffon's needles onto a grid of parallel lines. The convergence towards the value of π is unmistakeable. However, $O(900,800)$ throws are required before we can accept with high probability that the 2-nd decimal place is the correct value of π. We find the number of throws by solving Eq. 15.

Figure 10: Properties of four stochastic solvers under the stopping criterion plain. Each solver stops after exactly $10,100,1000, \ldots, 10,000,000$ throws. A total of $7 * 100 * 4=2800$ estimates of $\hat{\pi}$ have been generated.

III. 3 Experiments with solver darts stopping under fptC/fptR

We divide the experiments with solver darts into two part; results are depicted in Figures 11 and 12. The experiment in the top of Figure 11 implements the throws exactly as outlined in the template for stopping criterion fptC in Figure 8, given the target value of $\pi_{5}=3.14159$, i.e. for $k=5$. With the initial seed $=2624$, the error $\epsilon_{k}=\hat{\pi}-\pi_{k}$ fluctuates until

$$
\epsilon_{k k}=\operatorname{round}\left(\epsilon_{k}, k\right)=0
$$

i.e. the target value is reached on throw 10,573 . By changing the initial seed to 117691204 , the target value is reached only on throw $3,654,750$. For the initial seed $=892288677$, the target value is reached in the minimum number of throws: 452. For two initial seeds, 324900668

Figure 11: Throwing darts and monitoring the error $\epsilon_{k}=\left|\hat{\pi}-\pi_{k}\right|$ for $k=5$ under two stopping criteria, fptC (first-passage-time without restarts) and fptR (first-passage-time with restarts). Notably, under fptC we observe heavy-tail distribution of throws. However, under $f p t R$ we observe near-exponential distribution of throws. Under fptR we observe the minimal number of throws $=452$, where $\epsilon_{k k}=0$, significantly more frequently than under fptR. The symbol $\boldsymbol{\nabla}$ denotes $\epsilon_{k k}=0$ since the error value of 0 cannot be plotted on a log-scale.

and 734048780, the target value is not reached since both experiments are being censored on reaching the throw limit, $t_{\text {Lmt }}=10^{7}$. The ECDF for this experiment in Figure 12 suggests a heavy-tail distribution under the stopping criterion fptc.

Two experiments in the lower part of Figure 11 implement throws exactly as outlined in the template for $f p t R$ in Figure 8, With the initial seed $=2624$ (the same seed used under fptC), the error $\epsilon_{k}=$ $\hat{\pi}-\pi_{k}$ fluctuates between five random restarts before reaching the same target value ($\pi_{5}=3.14159$) on throw 2,712 . This experiment also reports the last random seed, seedLast $=783967185$, that invoked the last sequence of throws and reached the target value. By reusing this last seed as the new initial seed in the second experiment, we reach the target value in the minimum number of throws: 452.

Random restarts under the uncensored first-passage runtime stopping criterion is one of the heuristics we have used to achieve state-of-theart solutions for a number of hard combinatorial problems ${ }^{20}$. In each case, we found that the variables we count, such as throws in this paper, will have near-geometric or near-exponential distributions.

For a detailed side-by-side comparison of results under two stopping criteria, $f p t C$ and $f p t R$, see Figure 12. The differences in empirical cumulative distribution function (ECDF) under the two stopping criteria increase dramatically with increasing the number of throws; ECDF under fptR is clearly near-exponential. The pattern of 5 mean value points for the asymptotic number-of-throws model under fptR relates directly to 5 points displayed in Figure 2 for $1 \leq k \leq 5$.

III. 4 Three needle-type solvers stopping under fptC/fptR

Experiments with solver darts have provided a method for new experiments and performance comparisons with solvers needles1, needles2, needles3.

Figure 12: First-passage-time experiments with solver darts under two stopping criteria: fptC and fptR . The results reported for $f p t C$ are based on a sample size of 100 , the results reported for $f p t R$, as ECDF and as asymptotic model, are based on a sample size of $11 * 100=1100$ where 11 is the number of replicates. The dispersed values of throws are marked with symbol \times, the mean value of each replicate are marked with symbol \bullet, the mean value of all 11 replicates is marked with symbol \boxtimes. The minimal number of throws of 452 in ECDF has been discussed in Table 5.

[^1]

Each solver considers five target values of $\hat{\pi}_{k}, 1 \leq k \leq 5$:
$\{3.1,3.14,3.142,3.1416,3.14159\}$
and stops under $f p t C / f p t R$ criteria.
Statistics in Table 6 summarize such experiments for the case of $k=5$, i.e. for the target value of 3.14159 . For completeness, the table includes the solver darts. A quick review of these statistics leads to the following observations about the random variable throws:

- stopping under fptR, ratios median/mean, stDev/mean, max/mean support the hypothesis that the distribution of throws follows the exponential distribution - regardless of the solver!
- stopping under fptC, distribution of throws has a heavier tail than the exponential distribution - regardless of the solver!
Results that extend the side-by-side comparisons under two stopping criteria for darts in Figure 12 are depicted for needle-type solvers in Figure 13. The results reported for fptC are based on a sample size of 100, the results reported for $f p t R$, in ECDF and in asymptotic

Table 6: A subset summary of statistics from a total of $5 * 4 * 2 * 100=4000$ experiments with five target values of $\hat{\pi}_{k}(3.1,3.14,3.142,3.1416,3.14159)$, four solvers (darts, needles1, needles2, needles3), under two stopping criteria (fptC, fptR), and 100 random seeds. The subset is of size 800 for the target value of 3.14159 , i.e. for $k=5$.
sample size for each statistics

$$
N=100-\text { censoredCnt }
$$

standard error
SE = stDev/sqrt(N-1)
coefficient of variation
cVar $=$ stDev/mean
outlier coefficient max2mean $=$ max $/$ mean

If the distribution of throws or restarts follows the exponential distribution, the following ratios are invariant:
median $/$ mean $=0.6931$
stDev/mean $=1$
max/mean <= 10 'almost surely'
(i.e. with probability of 0.99995)

Figure 13: Experiments with three solvers under $f p t R$ and fptR.
model, are based on a sample size of $11 * 100=1100 ; 11$ is the number of replicates. The dispersed values of throws are marked with symbol \times, the mean value of each replicate are marked with symbol \bullet, the mean value of all 11 replicates is marked with symbol \boxtimes. The minimal number of throws that range from 355 to 275 in the respective ECDFs have been discussed in Table 5.

Additional statistics about experiments that involve 11 replicates and the sample size of $11 * 100=1100$ are summarized in Table 7 . The main purpose in introducing 11 replicates to experiments under the fptR stopping criterion is to convey a measure of reproducibility and precision for each solver. While each solver is returning results that approach the true target value of π, the rates of convergence towards this value differ significantly except for darts and needles1 when sample size ≤ 100. In this context, statistics summarized in Table 6 can only be associated with an instance of a replicate with sample size of 100 under an initial seed value of 1215 .

Before proceeding to summarize the result with our four stochastic solvers, we draw attention to the pattern of results with the BPP formula, observed in Figure 2. The pattern of particular interest are five points, for $k=1,2,3,4,5$ versus the number of required terms to approximate $\hat{\pi}$ as
$\{3.1,3.14,3.142,3.1416,3.14159\}$
Two terms are required to approximate 3.1 or 3.14 respectively. However, the third term alone approximates $3.142,3.1416,3.14159$. Now, review the mean values of throws associated with $k=3,4,5$ in Figures 12, 13:

	darts	needles1	needles2	needles3
k	throws	throws	throws	throws
--	-----	-----	-----	-----
3	3358.1	7292.1	631.3	667.8
4	2283.4	4705.3	1766.1	743.1
5	9445.2	8199.2	3338.9	784.8

We can argue that we are observing a pattern similar to Figure 2: for each solver, the mean value of throws for $k=5$ is a bound for the expected mean value for $k<5$. However, the predictive accuracy of the asymptotic model based on $k=5$ cannot be compared with the empirical model based on $k=15$ in Figure 2.

IV. Aggregates of Mean First-Passage-Times with Four Solvers

All that remains is to aggregate into a single figure, Figure 14, the most important empirical results reported in several figures and tables earlier: Figures 12, 13, and Tables 6, 7 .

The left side of Figure 14 depicts, for each solver, the empirical cumulative distribution functions (ECDFs) for the target value of

darts, fptR (censoredCnt $=0$)			
	mean	stDev	
throws	8565.4	7142.2	min
throws	9419.7	9256.7	dia
throws	9445.2	9265.0	ean
throws	10454.8	10147.9	max
$\begin{gathered} \text { needles1, fptR (censoredCnt }=0 \text {) } \\ \text { mean stDev } \end{gathered}$			
rows	6897.7	7272.2	min
throws	8271.5	8719.2	edi
throws	8199.2	7998.6	mean*
throws	9205.2	9279.3	max
needles2, fptR (censoredCnt $=0$)			
rows	2815.2	2569.0	min
throws	3273.1	3060.3	media
throws	3338.9	3191.9	mean*
throws	4132.2	4022.5	max
needles3, fptR (censoredCnt $=0$)			
	mean	stDev	
throws	739.8	518.1	min
throws	767.3	584.1	media
throws	784.8	587.7	mean*
throws	847.0	550.9	max

Table 7: Experiments with four solvers under termination criterion fptR and the target value $\hat{\pi}_{k}=3.14159$, i.e. with $k=5$ decimal digits. Each sample is based on 100 random seeds and replicated 11 times. The total sample size for each solver is thus 1100 . The rows min, median, max report values of mean and standard deviations from the selection of 11 replicas, each replica with sample size of 100 . The rows mean* report values of mean and standard deviations computed from 1100 samples contributed by 11 replicas. Plots of ECDFs and asymptotic models for each solver in Figures 12, 13 are based on 1100 samples contributed by all 11 replicas. Similarly, the summary of mean and standard errors in Table 11 are based on 1100 samples for each solver.

3.14159 ($k=5$ decimal digits). The summary of statistics in Table 6 supports the hypothesis that the distribution of throws follows the exponential distribution - regardless of the solver.

The right side of Figure 14 depicts, for each solver, the asymptotic model that relates the mean number of throws to the number of decimal digits that approximate the value of π. As explained in the closing paragraph of preceding subsection, the predictive accuracy of the asymptotic model based on $k=5$ cannot be compared with the empirical model based on $k=15$ in Figure 2. A case in point is the comparison of the mean value of throws for solvers darts and needles 1:
from ECDF: mean(darts) > mean(needles1);
from model: mean(darts) < mean(needlesi).
All we can say at this point that additional experiments with $k>5$ are needed to improve the accuracy of the predictive model.

V. Summary and Conclusions

The introductory section of this paper makes an assertion that
... insights gained during the follow-up lecture could well provide a formal framework for rigorous performance testing of all current and any future stochastic optimization solvers. The goal of this paper is to provide a foundation for such framework.

The twenty pages that follow, including the appendix, bring together not only the quest for π from two very different directions: from closed-form fomulas to stochastic methods; they also raise new opportunities offered by the very formulation of the stochastic solvers in this paper. The methodology we use to critically examine the role

Figure 14: Summary of first-passagetime experiments with four solvers: darts, needles1, needles2, and needles3. Each solver returns uncensored number of throws under the same stopping criterion: fptR (first-passage-time with restarts). The sample size is $100 * 11=1100$ where 11 is the number of replicates.

On the left, we depict empirical cumulative distribution functions (ECDFs) for the target value of 3.14159 ($k=5$ decimal digits). On the right we depict the asymptotic model that relates the mean number of throws to the number of decimal digits that approximate the value of π.
of termination criteria when deciding the trade-offs in their design can be ported to any new stochastic solver, be it in continuous or in discrete domains.

RANDOM RESTARTS UNDER UNCENSORED FIRST-PASSAGE TIME

 stopping criterion is one of the heuristics we have used to achieve state-of-the-art solutions for a number of hard combinatorial problems ${ }^{21}$. There is every reason to believe that by adapting and adopting these principles for stochastic solvers in a number of different problem domains, further improvements will be observed. In particular, adopting the quantized error as the target value formulated in Figure 8, converging to 0 , will further accelerate the solver convergence towards the best-known-values for the problems at hand. Such approaches are under test not only in the continuous domain ${ }^{22}$ but also in a number of discrete domains ${ }^{23}$.
Future Work

Due to the limited scope of this class project, empirical results in this paper are limited to approximating the asymptotic model of $\hat{\pi}$ to 5 decimal digits only. Unless new stochastic solvers are invented, the current approximations of $\hat{\pi}_{5}=3.14159$ with the four stochastic solvers will stand, for the sample size of 1100, with the estimated uncensored mean first-passage-time number of throws at $748.8,3338.9,8199.2,9445.2$ and the respective standard errors at 17.7, 96.2, 241.2, 279.4. Future work may consider a computational project that will extend the asymptotic model of $\hat{\pi}$ to $k>5$ decimal digits! The R-code and python-code is available on request. For computations with $k>8$, re-coding in C is recommended.

Acknowledgements

The code that created most of the data and illustrations in this article has been written in R and relies on a number of existing R packages ${ }^{24}$.

The layout of the paper, with emphasis on containment of data, illustrations, and sidenotes to the same page, could not have been achieved without the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ package tufte-handout ${ }^{25}$. See also the inspiring book on Beautiful Evidence ${ }^{26}$.

Kudos to all R-code and latex-code volunteers!

Abstract

${ }^{21}$ Borko Bošković, Franc Brglez, and Janez Brest. Low-Autocorrelation Binary Sequences: On Improved Merit Factors and Runtime Predictions to Achieve Them. Applied Soft Computing Journal - Elsevier, 2017; and Franc Brglez, Borko Bošković, and Janez Brest. On Asymptotic Complexity of the Optimum Golomb Ruler Problem: From Established Stochastic Methods to Self-Avoiding Walks. Proceedings of the IEEE Congress on Evolutionary Computation, June 5-8, Donostia - San Sebastian, Spain, 2017. For a reprint, see https://people.engr.ncsu.edu/ brglez/publications.html ${ }^{22}$ Franc Brglez. On Uncensored Mean First-Passage-Time Performance Experiments with Multi-Walk in \mathbb{R}^{p} : a New Stochastic Optimization Algorithm. Invited talk, IEEE Proc. 7th Int. Conf. on Reliability, InfoCom Technologies and Optimization (ICRITO'2018); Aug. 29-31, 2018, Amity University, Noida, India, 2018. For a preprint, see https://people.engr.ncsu.edu/ brglez/publications.html ${ }^{23}$ Franc Brglez. On Uncensored Global Stochastic Optimization in $\mathbb{R}^{p} / \mathbb{D}^{p}$ and the Efficiency of Multi-Walk Algorithms under Tableau Formulations. Work in progress. For updates, see https: //people.engr.ncsu.edu/brglez/ publications.html, 2018

${ }^{24}$ The R Project for Statistical Computing, https://www.r-project.org/
${ }^{25}$ tufte-latex - Document classes inspired by the work of Edward Tufte. Download from https: //ctan.org/pkg/tufte-latex?lang=en
${ }^{26}$ Edward R. Tufte. Beautiful Evidence.
Graphics Press LLC, 2006. https:
//www.edwardtufte.com/tufte/

VI. Appendix: on limitations of the stopping criterion plain

Before turning our attention to the title of this appendix, we pause by paying homage to individuals and organizations who,
circa 1950, began concerted efforts to reach a common agreement or understanding as to the meanings and consequences of using the terms such as "precision" and "accuracy" 27.

Subsequently, the paper by Churchill Eisenhart ${ }^{28}$ became the preeminent publication on the subject.

Before getting a step closer to additional context and motivation for this appendix, here are the questions asked by Stanley Rasberry ${ }^{29}$:

What one question haunts the best of analytical chemists when their day's work is done? Four of the main questions that arise regarding any analytical method are:

- Is it sensitive enough for the level of detection required?
- Is it free of interferences for the desired analyte?
- Is it precise, so that the results are reproducible?
- Is it accurate, so that the results approach true values?

Such questions are now being asked in undergraduate laboratories ${ }^{30}$ where Planck's constant is being measured with relative accuracy and precision. See Table 8 for updates on values of the Planck's constant: 8-significant digits are reported with certainty, with estimated standard deviation of 81 at digits 9 and 10, respectively.

According to web-based resources posted under the Cambridge Energy Landscape Database ${ }^{31}$, Lennard-Jones clusters have become a much-studied test system for global optimization methods designed for configurational problems. For an example of a solution, relevant in the context of this paper, see Table 9.

Notably, to find the minimum energy and optimum balance of forces between $N \leq 150$ atoms in a LJ-cluster we need to express not only the optimum energy with accuracy of 9 significant digits but also the $x y z$ solution coordinates with 11 significant digits.

The takeaway from these paragraphs is that both the accuracy and the precision matter when we design and interpret results of labbased experiments and also computational experiments that rely on 9 to 11 significant digits. Random variables related to solver runtime or counts such as the number of throws will have, in most cases, nearexponential distribution or worse. Sufficient computational resources are required so that statistics used to evaluate solver performances are based strictly on samples that are not censored.

We now re-examine the ambiguities that can arise with the stopping criterion plain as outlined in Figure 9 earlier. This criterion is the basis for computational experiments whose goal is to rank the performance of stochastic optimization solvers: take S solvers, P problem instances, N random seeds, run each solver under a fixed
${ }^{27}$ Prepared by M. Carroll Croarkin, http://nvlpubs.nist.gov/nistpubs/ sp958-lide/129-131.pdf
${ }^{28}$ Churchill Eisenhart. Realistic evaluation of the precision and accuracy of instrument calibration systems. J. of Research of the NBS, 67:161-187, 1963
${ }^{29}$ Stanley D Rasberry. Accuracy in Analysis: The Role of Standard Reference Materials. J. of Research of the NBS, 93(3):213-216, 1988
${ }^{30}$ A. Checchetti and A. Fantini. Experimental Determination of Planck's constant using Light Emitting Diodes (LEDs) and Photoelectric Effect. World J. of Chemical Ed., 3(4):87-92, 2015
Planck constant (h)
Value
$6.626070040 \times 10-34 \mathrm{~J} \mathrm{~s}$
Standard uncertainty
$0.000000081 \times 10-34 \mathrm{~J}$ s
Concise form
6.626070 040(81) $\times 10-34 \mathrm{~J} \mathrm{~s}$

Table 8: Plank's constant as posted by NIST in 2014. The standard uncertainty $u(y)$ of a measurement result y is the estimated standard deviation of y. See https://physics.nist.gov/cgi-bin/ cuu/Value?h\%7Csearch_for=universal_ in!
${ }^{31}$ http://doye.chem.ox.ac.uk/jon/ structures/LJ/ and the subdirectory on Lennard-Jones Clusters, http:
//www-wales.ch.cam.ac.uk/CCD.html

N	Energy	
N	-102.372663	(Hoare)
solution		
0.6884429539	-0.4902635898	-1.4414708801
1.5396551009	-0.2813139477	-0.5852156965
0.2992192805	-0.8759083275	1.3497840799
\ldots		
\ldots.		
0.1856536312	-0.1342268229	0.6014654858
0.0479861996	0.5490057018	-0.1816691063

throws	mean darts	CI95 darts	$\begin{gathered} \text { mean } \\ \text { needles3 } \end{gathered}$	$\begin{gathered} \text { CI95 } \\ \text { needles3 } \end{gathered}$	darts - needles3	paired p-value
1 e 1	308400.000	297503.8	314069.026	313307.5	-5669.03	0.30558
		319296.2		314830.6		
1 e 2	312960.000	309979.3	314283.994	313996.7	-1323.99	0.38240
		315940.7		314571.3		
1 e 3	313648.000	312588.8	314122.606	314038.1	-474.61	0.37761
		314707.2		314207.1		
1 e 4	314161.600	313803.2	314155.048	314128.6	6.55	0.97122
		314520.0		314181.5		
1 e 5	314106.760	314011.0	314155.082	314146.4	-48.32	0.32102
		314202.5		314163.7		

runtime limit and then, for each solver, tabulate distances from instance BKVs (best-known-values) and a number of related statistics. This is precisely what the experiment in Figure 9 was expected to accomplish for the four stochastic solvers and with the problem instance defined by the best-known-value of π.

Ambiguities with experimental results under the stopping criterion plain have been observed, on a much larger scale, only recently ${ }^{3^{2}}$: Figure 2 of this paper tallies successes with 18 solvers over all 100 runs for each of 48 objective functions. A verbatim quote: "A 'success' was defined as a solution less than 0.005 more than the minimum of the objective function between the default bounds." Briefly, solutions where $\mathrm{BKV} \leq$ solution value $<\mathrm{BKV}+0.005$ are accepted, solutions not in this range are considered, in our context, as censored.

In other words, the percentage of censored results ranges from $(4800-3800) / 4800=21 \%$ to $(4800-1200) / 4800=75 \%$. If the error tolerance that defines a 'success' is reduced from 0.005 to 0.0005 , the percentage of censored results in Figure 2 will get closer to 100%.

Results in Figure 9 are replicated in a new experiment and summarized in Table 10. In comparison with Figure 9, the ambiguities have not changed, they are just better documented. Given these statistics, the mean values of solvers darts and needles3 are indeed equivalent under the null hypothesis - and contrary to our intuitive expectations. We argue that the results reported under the stopping criterion of plain are ambiguous because we have not asked the right question before we decided to compare performance merits of two stochastic solvers. The right question is this: "what is the uncensored mean number of required throws for each solver to reach the same target range?"

Unambiguous answers to this question are summarized in Table 11; all statistics are based on four near-exponential empirical cumulative distribution functions (ECDFs) in Figure 14. The empirical results in this table provide the template for rigorous evaluation of stochastic optimization solvers under test currently 33 .

Table 10: This is a summary of a replicated experiment, based on the one in Figure 9. While the stopping criterion plain remains unchanged, we consider only the solvers darts and needles3 and monitor the first 9 decimal digits of π only. To make comparisons easier to relate with typical solvers, we rescale the value of π by multiplicative factor of 1 e 5 . The best-known-value, based on rescaled value of π, rounded to 5 significant digits would thus become 314159.
${ }^{32}$ Katharine Mullen. Continuous Global Optimization in R. Journal of Statistical Software, Articles, 60(6):1-45, 2014

solver	sampleSize $=1100$	
	mean(throws)	SE(throws)
darts	9445.1	279.4
needles 1	8199.2	241.2
needles2	3338.9	96.2
needles3	587.7	17.7

Table 11: The mean number of required throws for each solver to reach the target value of round $(\pi, 5)=3.14159$. These values are based on 1100 uncensored samples, generated under the fptR stopping criterion.
${ }^{33}$ Franc Brglez. On Uncensored Mean First-Passage-Time Performance Experiments with Multi-Walk in \mathbb{R}^{p} : a New Stochastic Optimization Algorithm. Invited talk, IEEE Proc. 7 th Int. Conf. on Reliability, InfoCom Technologies and Optimization (ICRITO'2018); Aug. 29-31, 2018, Amity University, Noida, India, 2018. For a preprint, see https://people.engr.ncsu.edu/ brglez/publications.html

References

[1] Petr Beckmann. A History of Pi, Second Edition. Golem Press, Boulder, Colorado, 1971.
[2] Jonathan M. Borwein. The Life of Pi: From Archimedes to ENIAC and Beyond, chapter From Alexandria, Through Baghdad, pages 531-561. Springer, Berlin, Heidelberg, 2014.
[3] David Bailey, Peter Borwein, and Simon Plouffe. On the rapid computation of various polylogarithmic constants. Mathematics of Computation of the American Mathematical Society, 66(218):903913, 1997.
[4] N. T. Gridgeman. Geometric Probability and the Number Pi. Scripta Mathematica, 25:183-195, November 1960.
[5] Michael D. Perlman and Michael J. Wichura. Sharpening Buffon's Needle. The American Statistician, 29:157-163, November 1975.
[6] Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jorg Waldvogel. The SIAM 100-digit challenge: a study in high-accuracy numerical computing, volume 86. SIAM, 2004.
[7] Enis Sinikrasan. Throwing Buffon's Needle with Mathematica. The Mathematica Journal, 11, 2008.
[8] M. Lazzarini. Un' applicazione del calcolo della probabilità alla ricerca sperimentale di un valore approsimato di Pi. Periodico di Matematica, 4:140-143, 1901.
[9] Lee Badger. Lazzarini's Lucky Approximation of Pi. Mathematics Magazine, 67(2):83-91, 1994.
[10] Lee L Schroeder. Buffon's needle problem: An exciting application of many mathematical concepts. Mathematics Teacher, 67(2):183-186, 1974.
[11] Barry J Arnow. On Laplace's extension of the Buffon needle problem. The College Mathematics Journal, 25(1):40-43, 1994.
[12] Sidney Redner. A Guide to First-Passage Processes. Cambridge University Press, 2001.
[13] Franc Brglez, Xiao Y. Li, Matthias F. Stallmann, and Burkhard Militzer. Reliable Cost Predictions for Finding Optimal Solutions to LABS Problem: Evolutionary and Alternative Algorithms. In Fifth Int. Workshop on Frontiers in Evolutionary Algorithms (FEA2003), 2003. http://militzer.berkeley.edu/papers/ 2003-FEA-Brglez-posted.pdf.
[14] Borko Bošković, Franc Brglez, and Janez Brest. LowAutocorrelation Binary Sequences: On Improved Merit Factors and Runtime Predictions to Achieve Them. Applied Soft Computing Journal - Elsevier, 2017.
[15] Franc Brglez, Borko Bošković, and Janez Brest. On Asymptotic Complexity of the Optimum Golomb Ruler Problem: From Established Stochastic Methods to Self-Avoiding Walks. Proceedings of the IEEE Congress on Evolutionary Computation, June 5-8, Donostia - San Sebastian, Spain, 2017. For a reprint, see https://people.engr.ncsu.edu/brglez/publications.html.
[16] Franc Brglez. On Uncensored Mean First-Passage-Time Performance Experiments with Multi-Walk in \mathbb{R}^{p} : a New Stochastic Optimization Algorithm. Invited talk, IEEE Proc. 7th Int. Conf. on Reliability, InfoCom Technologies and Optimization (ICRITO'2018); Aug. 29-31, 2018, Amity University, Noida, India, 2018. For a preprint, see https://people.engr.ncsu.edu/brglez/ publications.html.
[17] Franc Brglez. On Uncensored Global Stochastic Optimization in $\mathbb{R}^{p} / \mathbb{D}^{p}$ and the Efficiency of Multi-Walk Algorithms under Tableau Formulations. Work in progress. For updates, see https: //people.engr.ncsu.edu/brglez/publications.html, 2018.
[18] Edward R. Tufte. Beautiful Evidence. Graphics Press LLC, 2006. https://www.edwardtufte.com/tufte/.
[19] Churchill Eisenhart. Realistic evaluation of the precision and accuracy of instrument calibration systems. J. of Research of the NBS, 67:161-187, 1963.
[20] Stanley D Rasberry. Accuracy in Analysis: The Role of Standard Reference Materials. J. of Research of the NBS, 93(3):213-216, 1988.
[21] A. Checchetti and A. Fantini. Experimental Determination of Planck's constant using Light Emitting Diodes (LEDs) and Photoelectric Effect. World J. of Chemical Ed., 3(4):87-92, 2015.
[22] Katharine Mullen. Continuous Global Optimization in R. Journal of Statistical Software, Articles, 60(6):1-45, 2014.

[^0]: ${ }^{19}$ Zu Chongzhi, https://en.
 wikipedia.org/wiki/Zu_Chongzhi

[^1]: ${ }^{20}$ Franc Brglez, Xiao Y. Li, Matthias F. Stallmann, and Burkhard Militzer. Reliable Cost Predictions for Finding Optimal Solutions to LABS Problem: Evolutionary and Alternative Algorithms. In Fifth Int. Workshop on Frontiers in Evolutionary Algorithms (FEA2003), 2003. http://militzer.berkeley.edu/ papers/2003-FEA-Brglez-posted.pdf; Borko Bošković, Franc Brglez, and Janez Brest. Low-Autocorrelation Binary Sequences: On Improved Merit Factors and Runtime Predictions to Achieve Them. Applied Soft Computing Journal - Elsevier, 2017; and Franc Brglez, Borko Bošković, and Janez Brest. On Asymptotic Complexity of the Optimum Golomb Ruler Problem: From Established Stochastic Methods to Self-Avoiding Walks. Proceedings of the IEEE Congress on Evolutionary Computation, June 5-8, Donostia - San Sebastian, Spain, 2017. For a reprint, see https://people.engr.ncsu.edu/ brglez/publications.html

