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Abstract

Procedurally generated content has been a great area of inter-
est among designers, artists, musicians, and game developers.
Answer-set programming, an attractive logic programming
system for PCG, offers a simple and powerful modelling lan-
guage to describe combinatorial problems as logic programs.
Recent work has demonstrated new ASP solvers designed to
better fit the run-time resource constraints of modern games.
We implement two different ASP solvers to generate playable
Mario levels and evaluate them based on various metrics that
best portray the gameplay. We demonstrate a method through
which one can concisely capture the design space of Mario as
a ASP problem, rapidly create generators for different lev-
els, and create different kinds of levels while at runtime. We
compare 50 generated levels, made using Clingo and CatSAT,
using both quantitative and qualitative measures focusing on
users’ experience and ease of use for developers.
Keywords: Answer Set programming, Mario, Level Genera-
tion, Clingo, CatSAT

Introduction
Procedurally generated content is an area of great interest. It
can be employed in several domains such as music, imagery
and games. There are several games based on PCG. One
of most popular games ”Mario” has also received a taste of
PCG where new levels are generated with different designs.

We experiment with one such PCG method, Answer Set
Programming, to test the level generation at runtime for
Mario games. The aim of our project is to generate levels
using two different ASP solvers, and present our analysis
of the results that best portray a users’ experience and ease
of use for game developers. By concisely capturing the de-
sign space as an answer set program, we can rapidly define
and expressively sculpt new generators for game levels. The
ASP system will be tested using expressive range analysis
as well as human playthrough of hand picked levels for both
a quantitative and a qualitative analysis.

Our work focuses on the use of ASP and evaluation of the
same using a method that gives the range of expressions ob-
tainable from the generator. (Smith and Mateas 2011) pro-
vides a very good overview of the working of ASP. (Smith
and Whitehead 2010) introduces the concept of testing and
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evaluating for the expressive range of a generator as op-
posed to highlighting some of its samples for demonstrating
the generator’s features. We aim to utilize the concepts dis-
cussed in these works and implement them for comparison
using Mario.

Concerning the implementation of our generators, we
capture the Mario level map as a problem set represented in
both Clingo and CatSAT. After the level generation, we use
Mario AI Engine 2011 (Karakovskiy and Togelius 2011).
We also design specific metrics for evaluation of using these
generators for playable levels. Our metrics aim to mea-
sure the generated content both quantitatively and qualita-
tively, and are designed keeping the users’ playability and
programming ease in mind.

The rest of the paper is organized as follows. In section
2, we provide a brief background of the work already done
in this domain, with focus on different PCG problems, ASP
solvers, and current implementations of level generator for
Mario. Section 3 describes our approach for the level gen-
eration including the methodology for capturing the design
space of Mario as a ASP problem. We also describe imple-
mentation logic that are common to both Clingo and Cat-
SAT. Section 4 presents our evaluation metrics, followed by
an analysis of all the levels generated, expressive range anal-
ysis of 50 unique levels, and the time taken by each gener-
ator. In section 5, we discuss our results and provide an
in-depth comparison of the performance of both generators,
and future work in extending ASP for game level generation.

Background
Procedural Content Generation (PCG) is a game-design
technique through which developers create game content
via an automated process rather than via hand-authoring. It
readily provides the means to generate entire design spaces,
and game levels on the fly. PCG typically excels at creating
a large number of levels in a short period of time.

Smith et al. discuss the concept of PCG-based game de-
sign as a way to create new kinds of playable experiences.
The authors analyze the different ways PCG is used in games
and the impact it has on the player’s experience. Their anal-
ysis of the PCG-based games considers evaluation on the
following measures:

• Replayability and Adaptability, or the ability of the PCG



to adjust content in reaction to player actions or skill lev-
els

• Game Mechanics and Dynamics, or the ability of the
PCG systems to augment traditional mechanics or aug-
ment new dynamics entirely

• Player Control over Content

They provide an experimental PCG-based game that ex-
presses the idea of creation through exploration, and suc-
cessfully highlight the use of PCG to provide a new kind of
playable experience. Their experiments with building Ra-
thenn has shown the highly iterative process of PCG based
game design, with the game pushing the constraints on the
generative system.

However, a generative procedure may fail by producing
an undesirable artifact such as an unsolvable puzzle, a non-
sensical story, or an inexpressive and monotonic level. As
claimed by (Smith and Mateas 2011), PCG is concerned
with two design problems: The first is a concrete design
problem dealing with the production of game content with
desirable properties. The second is a meta-level problem
dealing with the production of generative procedures with
desirable properties (such as, among others, the ability to
produce desirable content). Answer set programming has
emerged as a declarative programming paradigm with par-
ticularly potent affordances for describing the design spaces
of PCG problems. Although nominally designed for knowl-
edge representation and search-intensive reasoning tasks, it
is easily re-purposed for answer set synthesis in which ASP
is exploited primarily for its generative capabilities.

We explore the capabilities of Answer Set Programming
for level generation in ’Mario’ and evaluate the design space
thus generated based on metrics that capture the differences
from other generation methods. Prior work (Shaker et al.
2012) has shown implementation of evolutionary algorithm
with grammatical representation to generate content for Su-
per Mario Bros, as it allows exploration on a wide space
of possibilities. The effectiveness of using an evolutionary
search algorithm for content generation, however, is limited
by the expressiveness of the design grammar. (Snodgrass
and Ontañón 2014) describe a method of procedurally gen-
erating maps using Markov chains. Their implementation
learns the statistical patterns from human-authored maps,
which are assumed to be of high quality. They then use the
learned patterns to generate new maps. While this method
is largely successful in generating good Mario levels, their
model largely depends on prior hand crafted maps.

Our contribution, through this paper, is to fill the research
gap in level generation with no prior learning, for games like
Mario. By allowing a programmer maximum control over
the design space of levels we can ensure that more unique
and expressive levels are generated. We provide a work-
ing framework for Mario level generation using ASP that
allows further research on building online level generators.
We also evaluate the expressiveness of the content generator
that would allow the developers to correlate difficulty levels
with the engagement of the players and thus provides more
developer control over the content.

Methodology
In this section, we describe how we capture the the Mario
levels design space as a ASP problem, the constraints that
we define on the problem, and how the generated levels are
encoded into the Mario game engine.

Representing the design space
We represent each level map as an w ∗ h two-dimensional
array level-map, where h is the height of the map, and w is
the width. Each cell level-map(i,j) corresponds to a tile in
the map, and can take one of a finite set of tile-types, which
represent the different types of tiles that we can represent in
the game. In ASP, each of these tile types becomes a stan-
dalone proposition. In general, the representation of each
tile type in the game depends on the developer. By allowing
a developer define all the various tile designs we ensure that
they have maximum control on the design space.

For our implementation, we have incorporated a to-
tal of 17 tile types or designs. These include the basic
tile types of ”Coin block”, ”Brick block”, ”Air”, ”Land”,
”Coins”, ”Goombas”, ”Koopas”, ”Pipes”, ”Gaps”, ”Power-
up blocks” and also include specific design patterns that we
created by combination of different block types. This al-
lowed us to represent a more diverse range of design in our
generated levels. The figure below shows one such gen-
erated level where a combination of design patters (coin
blocks) defined by us is used to create an interesting pattern.

Figure 1: Mario Level showing unique design patterns

Constraints on the generators
Every constraint is designed to ensure a level’s playabil-
ity. Constraints are applied on the various tile types. There
are two types of constraints:- position based constraints and
count based constraints.

Position based constraints: The position based con-
straints ensure that the levels are logically sound in terms
of gap placement, pipe placement and placing the ground.
These constraints are crucial in ensuring playability as well
as getting the basic layout of a Mario game.
• Ground constraint: - This constraint ensures that there

is no random ground placement in the air and that the
ground can cover only the lower most space of the level.



• Gap Placement:- The gap placement constraint plays the
role of ensuring a level is playable and prevents placement
of gaps adjacent to each other. The length of adjacent gaps
can go beyond the range of Mario’s jump and therefore
render the level unplayable. Another position constraint
ensures that there is no gap in the first few blocks of the
level, so that the player can at least have a start.

• Pipe Placement:- This constraint removes those levels
where the pipes are too tall and where the pipes are di-
rectly above a gap thereby floating in the air.

Count based constraints: The count based constraints
ensure that none of the special tile types (impassable tiles)
cover a majority portion of the map and block Mario’s path.
Also these constraints remove the possibility of having lev-
els with many enemies or few enemies. These constraints
affect the difficulty of the game by governing coins, bricks,
pipes, enemies, jumps and power-ups.

• Coin Block constraints:- We restricted the number of coin
block patterns in a given level. The number of coin blocks
of a given pattern can be between 1 to 3. There are 2 dif-
ferent patterns and therefore a maximum of 6 coin block
patterns are present in a game. The first pattern has one
coin block and the second pattern has three coin blocks.

• Coin constraints:- Here there are 3 distinct patterns and
each of those patterns can occur in the game once or twice.
The 3 patterns have 1, 3 and 5 coins. Together with coin
block patterns there can be a maximum of 30 coins in a
level. We chose such constraints so that every 4 levels
which is a categorized as a world in the Mario games, the
player gets a life (100 coins make a life).

• Brick constraints:- The number of brick patterns in a level
can scale from 3 to 6. There are three patterns and each
pattern can occur at most two times in a level. When pat-
terns appear at the same spot or overlap, they create new
shapes. One such example is given in figure 1.

• Enemy constraints:- The number of Goombas (sentient
mushrooms) in any level ranges from 3 to 6. The num-
ber of Koopas (turtles) in any level ranges from 1 to 3.

• Pipe constraints:- The number of pipes is restricted to a
minimum of 3 pipes and a maximum of 6 pipes. In the
current scenario, pipes are just for aesthetic purposes and
to add jumps to make the gameplay varied. These pipes
can also be used a placeholder for flower enemy, however
they haven’t been added to the generator yet.

• Jump constraints:- The number of jumps in a level ranges
from 3 to 6. There are three sizes of jumps in a level, 2
block wide, 3 block wide and 5 block wide. Each jump
length can be present in a level at most 2 times. The jump
count and position constraints ensures that there ample
ground for mario to run on as well as Mario can make all
the jumps.

• Power-up constraints:- There at most 2 power-ups in a
level. If Mario is large, the game engine places a Fire-
Flower in the power-up block and if Mario is small there
will be a mushroom there.

Encoding generated levels into the game engine
We use the Mario AI 2011 (Karakovskiy and Togelius 2011)
software as out game engine as it afforded freedom and ease
of use while encoding the levels.

The output of both CatSAT and Clingo is a list of 3-tuples
(X,Y,T) where X and Y are position co-ordinates and T is
the tile type. Since the position co-ordinates X and Y are
unique, each tuple is unique. These tuples are fed to the
engine. The engine creates a level object and populates the
map of the level with the various tile values. Whenever a
special tile pattern is encountered, the adjacent tiles have
their values changed according to the pattern. However, if
two patterns are next to each other such that there is overlap,
then the pattern with the lower X co-ordinate wins and has
its pattern written over the losing pattern. This creates new
patterns and designs.

Enemies are placed at the location indicated by their tu-
ple and the engine simulates their behaviour and movement.
Pipes heads are placed at the location present in their tuple
and the stem extends till the ground. Since, there is no check
for enemy location and pipe location overlap, there are levels
where an enemy is stuck in a pipe and keeps moving to and
fro within a pipe as the engine makes the enemies go in the
opposite direction upon collision with a pipe or impassable
object.

Since, we are generating levels of width 100, the final flag
is placed at X coordinate 100. Upon launching the level, the
engine parses a text file and creates the level and displays a
GUI for playing the game.

Metrics
In order to best demonstrate the range of content that can
be generated using ASP solvers for games like Mario, we
considered two main aspects of game design. The first set
criteria are user-based and focuses on game play. The met-
rics that we considered under this criteria are playability of
the level which tells if the generated level is playable or not,
and the difficulty of the level. We note that the difficulty of a
level is more of a qualitative measure, and thus we use three
different quantitative metrics to represent difficulty of each
level. These metrics are the time taken to finish each level,
number of actions taken to finish, and time spent by Mario
in the air (jumps performed).

The second set of criteria which we defined were focused
on level design, and are evaluation metrics which are more
focused for game developers. The metrics defined under this
criteria include the spreadness of each level, and time taken
for level generation. Spreadness is a measure for how varied
the each generated level is. As a game designer using a gen-
erative model to create game levels, it is quite important that
the generated content has some variation. For instance, we
cannot have a generated level where there are no obstacles
and Mario can just run straight till the end. Conversely we
cannot also generate levels where the map is filled with ran-
dom obstacles making it impossible for the user to proceed.
A sweet spot between relatively sparse and excessively filled
level is desired.

The second metric which is the time taken for generation



of each level is one of the most important metric. This is be-
cause we want the levels to be generated online, and having
a low latency for the generator to create new levels is very
important. We record the time both the generators take to
solve the ASP problem, and not the complete work flow of
the system. This is because the usage of Clingo and CatSAT
for level generation is quite different, and was not applicable
to create a common complete work flow.

A summary of all the criteria is presented in Table 1.

Results
We tested 25 levels each for both CatSAT and Clingo. Each
of the level was played by an AI. The AI we used was the
winner of the 2009 Mario AI gameplay track created by
Robin Baumgarten. It is based on the AStar algorithm and
its sole aim is to win the level with the leaset possible time.
We used software from the 2009 Mario AI gameplay track.
This software has its own Mario engine that is similar to the
2011 track as well as the means to add code to record other
metrics.

Playability
The first result we present is the number of playable levels
generated. This basically refers to whether Mario can reach
the end and touch the flag. The results are given in Table 2.

From table 2, we can see that both generators are creating
a high percentage of playable levels. The unplayable levels
occur due to the placement of a pipe with a special block and
so mario cannot jump over the combination of the two. Also,
a level was unplayable because an enemy goomba spawned
at the exact same location of Mario’s spawn. This results in
Mario’s death the moment the level starts.

Difficulty
Difficulty is a subjective score and hence we try to make it
based on a total of three metrics. Time taken, actions taken
and jumps. Since, the AI focuses to finish the level in as little
time as possible, having lower values for all three metrics
denotes to some extent that the level is easy.

The playtime for both Clingo and CatSAT is shown by the
graph in figure 2. The mean time and standard deviation are
given in table 3. Unplayable levels do not have data points
as data is recorded for levels that are completed. In general,
levels generated by Clingo take slightly more time than lev-
els generated by in CatSAT. This is attributed to both a lower
number of enemies and jumps present in levels generated
in CatSAT. The graph shows one outlier in Clingo which
goes above 40 seconds. This level was special as it required
Mario to backtrack and jump to land on a brick to gain a
height advantage. The AI was unable to clear this level, and
these figures were obtained via a manual play through. This
level can therefore be categorized as a difficult level.

Another means of gauging the difficulty of the level is by
the means of number of actions performed. Actions here
refers to jumps, movement and sprint. Higher the number of
actions, higher is the expected difficulty of the level. Since
the AI is motivated by taking the least time to complete the
level, it tends to use the movement to the right and sprint as

Figure 2: Mario AI Playtime

its primary actions. Any other actions such as jumps, going
back, stop sprinting and start sprinting again relates to the
level having elements that need attention. The presence of a
gap warrants a jump, similarly the presence of two closely
placed gaps requires a slowdown to precisely land the jump.
The values for actions taken is given by the graph in figure
3.

Once again level 22 the outlier in time, is an outlier here.
Since, it requires backtracking and precise jumps the num-
ber of actions required shoots up to 620. The mean and
standard deviation of actions required is given in table 4.
We can see that Clingo is creating more varied levels with a
higher standard deviation and also more difficult levels with
a higher mean actions required per level.

Figure 3: Actions required to pass the level

The last metric for evaluating difficulty is Jumps. This
metric records the number of actions for which Mario is in
the air. Here, Mario whenever Mario jumps, this metric in-
creases once for frame till Mario touches the ground again.
The values for jump/ in air for every level is given in figure
4.

We can see that for Clingo Mario is in the air for a larger
number of frames. This is because of the presence of more
enemies and gaps. Also again level 22 is the outlier, due to
presence of the outlier that required for multiple attempts. In



Table 1: Summary of evaluation metrics
Metric Criteria Description

Playability User centred Denotes if the level is playable
Time taken Difficulty criteria Represents the time taken by the AI to finish the level

Actions taken Difficulty criteria Represents the number of actions taken by the AI
Jumps taken Difficulty criteria Represents jumps (or the time spent by Mario in air)
Spreadness Developer centered Represents how many unique tiles exist in the level

Time Analysis Developer centered Time taken for level generation

Table 2: Playablility Score of Generators
Solver of playable levels % of levels playable
Clingo 22/25 88%
CatSAT 21/25 84%

Table 3: Time taken by AI
Solver Mean time(seconds) Standard Deviation
Clingo 19.95 6.84
CatSAT 18.7 3.17

Table 4: Actions required to pass the level
Solver Actions required Standard Deviation
Clingo 270.7 87.05
CatSAT 263.5 39.7

general, Clingo has more levels that have more jump frames
compared to CatSAT.

The mean and standard deviation for jump values is given
in table 5. Here CatSAT has a slightly higher mean but once
again Clingo is more varied.

Table 5: Number of jump frames
Solver Jump Frames(mean) Standard Deviation
Clingo 49.04 29.14
CatSAT 49.95 17.25

Figure 4: Amount of time Mario is in the air

Spreadness
We define spreadness of each level as the number of dif-
ferent tile types that are generated within each zone of the
level. The base logic behind introducing this metric was that
the visible area of the map at any time is only 20-25 blocks
wide. So we wanted to ensure that the generated levels in
each visible range was expressive enough to make the level
interesting, and should not be monotonous as the player pro-
gresses through the level. We divided the generated levels
into 5 consecutive sections for expressive range analysis and
evaluated the spread for each section.

Figure 5: CatSAT - Spreadness analysis

Figure 6: Clingo Spread analysis

As can be seen in the figures above, CatSAT performs
much better in providing more spread out levels in com-



parison to Clingo. The levels generated by Clingo tend to
have localized spread, and do not really maintain the unique
spread throughout.

Time Analysis for level generation
One of the most important criteria among all the others is
the time it takes for the generator to generate each level.
We recorded the time for all 50 levels and the statistics are
shown in figure 6.

Figure 7: Time for level generation

As it can be clearly noticed from the graph, CatSAT per-
forms much better in generating levels within a fraction of a
second. Clingo however takes much longer to generate each
level, typically in the range of a few seconds.

Discussion and Future Work
Based on the several evaluation criteria that we have covered
above, we conclude with the following discussion about the
evaluation of two generators for online level generation.

• In terms of programmer specific criteria, CatSAT provides
much more flexibility of programming and ease of use as
compared to Clingo. The ease of representing proposi-
tional logic in CatSAT ensures that it can be easily inte-
grated into any game.

• The runtime of CatSAT to generate levels is also a huge
plus towards programmability because it means that it
would make generating online levels during playtime
much more practical as compared to Clingo.

• Based on the user specific evaluation criteria, we conclude
that Clingo performs better in the aspect of generating
more interesting levels than CatSAT. When we manually
analyzed the various levels generated, we found Clingo
generating many interesting levels which in one case was
very similar to the original Mario levels.

• The difficulty measures evaluated for both the generators
also demonstrate that Clingo on average generates more
difficult and varied levels than CatSAT. This is verified
from the several difficulty metrics that we have measured
which show that Clingo achieves a higher mean and vari-
ance on the quantitative measures.

Based on the findings summarized above, we have suc-
cessfully demonstrated the application of ASP solvers for
level generation of a game like Mario. The various met-
ric evaluation also underpin our hypothesis that using ASP
solvers as the generation method for online level generation
provides a promising area of research. We have demon-
strated the applicability of ASP solvers but still a research
gap that needs to be addressed lies in the various ways of
expressing game level space as ASP problems. We realize
that this might be a difficult challenge for most games to
represent their design space in terms of propositions. But
the games for which it can be done, using ASP to generate
unique, and previously unseen levels from scratch can be
done using ASP solvers.
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