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Abstract

The concept of ”Artificial General Intelligence” has emerged
as an approach to identify fundamentally distinct property
from domain specific capabilities, to create machines with
very general cognitive functions that achieve high level of
autonomy. However the metrics for accessing the partial
progress of such systems, unlike straightforward ways of ac-
cessing the achievement of human-level AGI (the Turing test,
Robot University Student Test), remain more problematic. In
this paper, we review the identified capabilities a cognitive
architecture should support, some properties it should exhibit
and the evaluation criteria (views) used in prior studies to
evaluate the ”intelligent” behavior in cognitive architectures.
We highlight the performance of each view in evaluating ”in-
telligence” and discuss limitations in their approach with a
focus on understanding how intelligent behavior is evaluated
and the constraints of specific views.

Introduction
The standard approach in the AI discipline (Russell and
Norvig 1995) views artificial intelligence largely in terms
of the pursuit of discrete capabilities. The term ”narrow AI”
coined by Ray Kurzweil (Kurzweil 2010) is used to refer to
the creation of systems which demonstrate specific ”intelli-
gent” behaviors in narrow and well-defined contexts. But for
such domain specific systems if the environment is changed,
if the context or the behavior specification is modified even
a little bit, an external reprogramming or reconfiguration ef-
fort from humans is required to enable the system to retain
its level of intelligence. But the idea of a generally intelli-
gent system, like humans, is quite different in the sense that
we possess a broad capability to self-adapt to changes in en-
vironment or goals, performing ”transfer learning” (Taylor,
Kuhlmann, and Stone 2008) to use the knowledge from a
learned task to speed up learning in a novel task. The concept
of ”Artificial General Intelligence” (Goertzel 2014) thus has
emerged as an antonym to ”narrow AI”, to refer to systems
with this sort of broad generalization capability.

Any system that is considered as ”AGI” does not need
to possess infinite generality, adaptability, and flexibility; al-
though it can be considered as bridging the gap between cur-
rent domain-specific targeted solutions and creating general
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human-like intelligence. General intelligence is defined as
the ability to achieve a variety of goals, and carry out differ-
ent tasks, in heterogeneous contexts and environments. Any
system capable of demonstrating general intelligence should
be able to handle problems and situations that are more dy-
namic and varied in nature than those anticipated by its cre-
ators. Such systems are expected to be good at generalizing
the knowledge gained from a specific task and utilize it to
learn to solve different problems in different contexts.

The most promising work for creating machines with gen-
eral intelligence belongs to the research area of cognitive
architectures. A cognitive architecture specifies the underly-
ing infrastructure for an intelligent system, which are essen-
tially a move from specification to implementation. Cogni-
tive Architectures, often designed with some cognitive the-
ory in mind, typically deal with relatively large software
systems that have many heterogeneous parts and subcom-
ponents operating together to solve general problems and
tasks in more than one domain. Many of these architectures
are built to control intelligent agents (Wooldridge and Jen-
nings 1995) that are designed for a specific agent theory.
Cognitive Architecture research covers a broad range of top-
ics at all levels: from underlying theoretical assumptions, in-
spiration, methodology, motivation, structure, requirements,
and technology. Research on cognitive architectures is im-
portant because it supports a central goal of artificial intelli-
gence and cognitive science: the creation and understanding
of synthetic agents that support the same capabilities as hu-
mans.

This survey paper reviews the theoretical concepts behind
cognitive architectures, starting with the design goals that
a cognitive architecture must meet, or the capabilities that
a system should be able to demonstrate in order for it to
be considered as AGI. This is followed by a summary of
various evaluation criteria that is mostly associated with the
assessment of cognitive architectures, and then we discuss
prior studies on assessment of such architectures and briefly
summarize their findings about implementation issues and
conclude by reiterating the need to shift to plastic design
approaches.

Cognitive Architecture Design
An architecture includes those aspects of a cognitive agent
that are constant over time and across different application



domains, including:

• short term and long term memories to store agent beliefs,
goals, and knowledge

• representation of elements present inside these memories
as some data structure

• functional processes that operate on such defined struc-
tures, including mechanisms to not only utilize them but
also learning mechanisms to alter them

However, for an agent capable of demonstrating general
intelligence, these memories are bound to change over time
and thereby knowledge and beliefs cannot be encoded as a
part of the agents’ architecture - different knowledge bases
and beliefs should be interpreted by the same underlying
cognitive architecture. Thus architectural research, as op-
posed to research on expert systems aims for breadth of cov-
erage across a diverse set of tasks and domains and offers
accounts of intelligent behavior at the systems level, rather
than at the level of component methods designed for domain
specific tasks.

In this section we briefly summarize the theory on cogni-
tive architecture designs and challenges (Langley, Laird, and
Rogers 2009) and cover various capabilities that a cognitive
architecture should demonstrate.

Capabilities
Intelligent systems are designed to engage in activities that,
as a whole, constitute to its functional capabilities. Although
activities such as recognition and decision making require
a well-defined architecture on their own, in this section we
briefly cover different functionalities without specifying the
underlying mechanisms used to implement them.

Recognition and categorization An intelligent agent
must be able to recognize situations or events from its sur-
roundings and should be able to interpret it as instances of
known or recognizable patterns. This is closely related to
categorization as the agent should also be able to assign ob-
jects, situations, and events from its environment to known
concepts or categories.

Although recognition is often considered a primitive pro-
cess that underlies many higher level functions,and catego-
rization as one such higher level function, they are more
closely related and cognitive architectures in order to sup-
port them must provide a way to represent patterns and sit-
uations in memory. A recognition process must also be in-
cluded that lets a system identify when a particular situation
matches a stored pattern and the degree to which it matches,
thereby allowing the agent to adapt its learning behavior to
changes in the environment.

Decision making and choice A critical part of any intel-
ligent system is not just being able to recognize changes in
its surrounding but also to make decisions and select among
alternatives. Decisions are very closely associated with the
underlying recognition of a situation or pattern, and most
cognitive architectures combine the two processes as a uni-
fied recognize-act cycle underlying all cognitive behavior.
In order to support this sort of one-step decision making in

the systems level, the architecture must provide ways to rep-
resent alternative choices or actions, that encompass both
internal cognitive functions and external ones.

But making decisions in a dynamic environment purely
based on pattern matching is not entirely an ”intelligent”
behavior. An ideal cognitive model should also be able
to improve upon its decisions through learning (meta-
learning (Vilalta and Drissi 2002)). This results in improve-
ment in the decision making which will be reflected in the
overall behavior of the agent in new environments.

Perception and situation assessment Systems will often
be equipped with a variety of sensors from which it must
sense, perceive, and interpret information about its environ-
ment. A cognitive architecture thus should be able confront
the issue of attention, that is it should be able to decide how
to allocate and direct its perpetual resources to detect rele-
vant information in complex environments. It should also be
able to track rapid changes in a dynamic environment and
should have a perpetual knowledge of what sensors to use,
when and where to focus them, and should be able to over-
come the various interferences that are plausible.

Prediction and monitoring Perpetually existing intelli-
gent systems should be in a position to predict future situ-
ations and events accurately which requires the knowledge
of how the actions of an agent will affect the outcome or
the environment the agent is in. An ideal architecture should
also include the ability to learn predictive models from ex-
perience and to refine them over time.

Planning Cognitive architectures allow intelligent sys-
tems to achieve their goals in new situations by enabling
them to generate plans and to solve problems. Planning is
only possible when the agent has an environmental model
that predicts the effects of its actions. Thus a cognitive archi-
tecture must have mechanisms to represent plans as ordered
set of actions, with their expected effects, and how each ef-
fect enable later actions. It should also allow an agent to con-
struct a plan from components available in memory, which
in turn provides problem solving capabilities to the agent
through multi-step construction of a problem solution.

Reasoning and belief maintenance In contrast to plan-
ning where we achieve objectives by taking actions, rea-
soning draws mental conclusions from other beliefs or as-
sumptions that the agent already holds. So in order to sup-
port reasoning, a cognitive architecture must first represent
relationships among beliefs, using first order logic, produc-
tion rules, and neural networks or Bayesian networks. Be-
lief maintenance and their relations is essentially important
in dynamic environments where the situations may change
in unexpected ways and the agent must track the changes to
determine whether it should continue its former beliefs.

Execution and action Cognition also allows supports and
drives our activity in the environment. Thus being able to
store, represent and execute motor skills that enable such ac-
tivity is also a requirement for a cognitive architecture. Not
only limited to execution, an ideal cognitive model should



also be capable of learning about skills and execution poli-
cies from experience.

Interaction and communication The most effective form
of obtaining knowledge in humans is through communi-
cation, so naturally being able to communicate acquired
knowledge between systems becomes a major requirement
in any cognitive architecture. It should support mechanisms
to support transformation of knowledge into a communica-
ble form so that other agents are able to acquire syntactic and
semantic knowledge for use from the communicated mes-
sage.

Learning Learning usually involves generalization be-
yond specific beliefs and events. Many architectures treat
learning as an automatic process that is not subject to in-
spection or conscious control, but also use meta-reasoning to
support learning in a more deliberate manner. Since the data
required for agents learning comes from various sources, it
should be able to support processing on different memory
structures to improve the agents’ capabilities.

Views of cognitive architecture: choosing an
approach

Each science is differentiated from the others not merely by
the set of phenomena it claims as its object of study, but
also by the approach it takes (or the paradigm (Kuhn 2012)).
Similar to the view of man as a symbolic processor for the
study of the phenomena of human intelligence (Lenat 1977),
the study of cognitive architecture requires various different
approaches (views) in order to evaluate the various capabil-
ities that it demonstrates.

But the evaluation of cognitive systems poses a greater
challenge than evaluation of component knowledge struc-
tures and methods, primarily because of the architectural re-
search occurring at the systems level. Additionally a cogni-
tive architecture offers a unified theory of cognition (Newell
1994) with different modules tightly bound together in or-
der to support synergistic effects. Since evaluating the syn-
ergy in cognitive systems cannot be tested empirically, the
evaluation criteria covered below helps in understanding the
functionality of the architecture.

Generality Since we consider cognitive architectures as
the building block for artificial general intelligence, it would
be really weird if we do not include generality of the archi-
tecture as a key dimension along which to evaluate a candi-
date framework. And the most straightforward way of eval-
uating generality in an architecture is to construct an intel-
ligent agent using the same architecture and evaluating its
performance under diverse environmental conditions. The
intelligence of the said architecture is then determined by
the number of environments in which it is able demonstrate
intelligent behavior. Thus broader the range of these envi-
ronments, the greater is its generality.

Rationality Humans make rational decisions in our day to
day lives, and in a way intelligence can be defined when the
pursuit of certain behavior is accompanied by specific log-
ical reasoning. Rationality in agents can be identified from

the relationship between its goals, knowledge, and its ac-
tions. (Newell 1982) states ”If an agent has knowledge that
one of its actions will lead to one of its goals, then the agent
will select that action”. However given the choice of multi-
ple actions that can be taken to achieve the same goal, an
agent should ideally choose the most optimal action. Al-
though due to the limited cognitive resources available to
an agent, the concept of bounded rationality (Simon 1957)
is put forward that states that the agent will behave nearly
optimal to its goals though limited by its resources.

Efficiency and scalability The sole idea of research in ar-
tificial general intelligence is to build agents that can be used
in practice to solve problems at least as efficiently as hu-
mans, implying that the agents must be able to perform tasks
under a time and space constraints. The design of architec-
tures that include a recognize-act cycle, as discussed in the
previous section, allows for the architecture to support real-
time systems.

However architectures must be in a position to handle dif-
ferent difficulties of task and situations, and thus need to be
scalable across different scenarios. We evaluate the scalabil-
ity of a system by testing it against tasks of varying diffi-
culty, environmental uncertainty and other more complicat-
ing factors. The scalability factor of the architecture is then
determined by how unaffected its performance is by these
factors.

Reactivity Intelligent agents are expected to demonstrate
intelligent behavior even in extreme and unpredictable envi-
ronments, and the underlying cognitive architecture should
support their operation. Thus the ability to react to unpre-
dictable changes in the environment is also a criteria for the
intelligence in cognitive architectures. The more rapidly an
architecture responds or the greater its chances of respond-
ing to unpredictable changes, the greater is the reactivity of
the system.

Improvability One of the key aspects of human intelli-
gence is our ability to improve ourselves over time through
learning, experiences, and self-evaluation. Improvability in
cognitive architectures is evaluated based on the agents’
ability to perform a particular task that it could not perform
earlier after acquiring some knowledge. An agent is also ex-
pected to learn from its experiences, so improvability in that
case could be measured in terms of its ability to perform new
tasks.

Autonomy We expect intelligent agents to be able to func-
tion on their own for extended periods of time and the ar-
chitectures supporting them should allow them to create
their own tasks and goals. They should also exhibit robust-
ness in novel environments and should not fail when they
encounter unexpected situations. Autonomy in intelligent
agents is measured by presenting them with high-level tasks
that require autonomous decision making and then evaluat-
ing their performance in that environment.

Choosing a viewpoint
As we have defined in the previous section, the different
views for evaluating ”intelligence” helps us in quantifying



each capability that the cognitive system should demon-
strate. While it would be highly beneficial to have a bench-
mark or common test problem for cognitive architectures to
facilitate more general comparison, no appropriate bench-
mark of reasonable maturity is known to exist (Thórisson
and Helgasson 2012). So in order to measure intelligent be-
havior, we need to choose some viewpoint among the ones
discussed above and evaluate a given cognitive architecture
using that. We now present a summary of two previously
used viewpoints for evaluation of cognitive architectures and
discuss the weakness in their approach.

Intelligence as Efficient searching of an a priori space
The very first intelligent systems ever built by humans were
based on the understanding that most of the behavior that
we regard as ”intelligent” involves some sort of discovery
process. These models were built with the view of Man
as information processor (Newell, Shaw, and Simon 1957;
Newell and Simon 2007). Significant efforts were made to
model a wide variety of cognitive activities (recognizing,
problem solving, inventing) as a search in which the per-
former is guided by ’heuristics rules’. Thus different cog-
nitive models were developed using Heuristic Rule Guided
Search and the ability to zero in on something from a vast
search space as ”intelligent” behavior.

Probably one of the earliest AI programs ever written was
the Logic Theorist (Newell, Shaw, and Simon 1957), which
was repeatedly given symbolic logic theorems for it to find a
formal proof for each. The search for proof in LT was done
in a completely exhaustive manner with the help of a few
heuristics to constrain its search space. The learnings about
rule guided search from LT was used to build another sys-
tem, GPS (General Problem Solver), with the aim to embed
few general heuristics in a domain-independent form and
thus allowing it to solve any problem once it is specified in
GPS formalism. However these few general heuristics could
not possibly be as powerful as the general human-like intel-
ligence that we desire.

But the importance of using both general heuristics and
task-specific heuristics for guidance was soon realized and a
scientific invention tool (AM) was developed (Lenat 1977).
AM performed discovery of new mathematics concepts and
relationships between them. It viewed open-ended math re-
search as a search and explored in a space of partially-
developed concepts while guided by a few hundred heuristic
rules. AM was able to demonstrate that open-ended scien-
tific theory formation, including defining and exploring of
new concepts and relationships) could be mechanized, and
modeled as a heuristic rule guided search. However the ma-
jor flaw in considering a rule guided search as a verification
of intelligence brings forward the view of generality dis-
cussed earlier, is it really a general intelligence if we have
to manually provide numerous heuristics again if the envi-
ronment of the agent is changed.

In essence, AM and other knowledge based expert pro-
grams like MYCIN (Shortliffe 1974), MOLGEN (Feitelson
and Stefik 1977), PROSPECTOR (Duda et al. 1978), per-
form complex problem solving by utilizing the power of ad-
ditivity in rule-guided search, where many small pieces of

local knowledge combine to produce sophisticated global
effects, with a consequent ease of introducing new pieces
of knowledge. However the major flaw in this is that rule
guided search could theoretically be synonymous to discov-
ery process but that does not provide enough bias for defin-
ing intelligence, let alone general intelligence.

Autonomous behavior of intelligent agents Autonomy,
as discussed earlier, is also a key approach to evaluate any
system that is considered generally intelligent and quite re-
cently (Thórisson and Helgasson 2012) this concept has
been used as an organizing principle for the comparison of
cognitive systems. The viewpoint considered is that of an ex-
ploration robot that can be deployed, without special prepa-
ration, into virtually any environment, and move between
them without serious problems. The environments that the
robot encounters may vary significantly in dynamics and
complexity. The goal of the robot is exploration, in a time
constrained but otherwise open-ended world, which trans-
lates into learning about the environment through observa-
tion and action.

Now given that the robots’ processing capacity is limited
and the environment(s) information is rich, the robot must
be able to demonstrate attention capability in order to se-
lect which sensory data to process and how deeply. I should
also have some expectations for upcoming events, to steer
it focus of attention, thereby requiring the capability of pre-
diction. It should also be able to couple reasoning with pre-
diction to avoid trial and error approaches in situations of
irreversibility. It also requires introspective capabilities that
allow it to evaluate and reason about itself in order to im-
prove its internal, and thus external, operation. So in totality
four main themes are considered vital to the systems’ oper-
ation: Real-time, resource management, learning, and meta-
learning.

The architectures covered in the study using autonomous
behavior of systems range from architectures designed at the
robotics end like Ymir (Thórisson 1999) to more traditional
cognitively focused architectures like ACT-R (Anderson
1996; Anderson, Matessa, and Lebiere 1997), Soar (Laird
2008), NARS (Wang 1995), and also the Ikon Flux architec-
ture (Nivel 2007).

Based on their exhaustive comparison on the parameters
discussed earlier, they identify a common tendency among
most of the architectures as to ignore realtime operation and
resource management aspects even though these capabilities
are quite essential for any higher-level intelligence. Time is
often not considered as absolute in most systems, rather the
tasks are scheduled with time as a relative function. Cogni-
tive architectures should also be able to implement resource
management in much more efficient way so as to allow the
system to prioritize processes by itself without having a con-
structionist approach (Thórisson 2009) of human defined
heuristics. Additionally, a major importance is given to the
requirement of an agent to support a plastic infrastructure,
one in which it should be able to reconfigure its own learn-
ing structure using meta-learning.

The study also highlights the importance of designing ar-
chitectures from the get-go with a more complete set of



cognitive functions and operational capabilities and not just
having a number of different cognitive processes interact-
ing with each other. The authors stress upon the move from
constructionist approach of building AI systems to con-
structivist approach with design goals of building architec-
tures that constitute of smaller components, and thus making
modifications easier.

The architecture comparisons reveal that very few exist-
ing cognitive architectures are based on viable methodolo-
gies that would help reach human level autonomy. They also
argue that present research should search for methodologies
that are able to handle systems of substantial size and com-
plexity. Since meta-learning and improvability is also a part
of these architectures, the effort of a system being able to
reconfigure itself should be made simpler.

Limitations
Although the study of cognitive architectures from the view-
point of autonomy does provide valuable insights into the
importance of a number of the capabilities of an intelligent
system, the evaluation stands constricted to our definition of
autonomy. Autonomous agent in a broad sense, implies that
it should have its own body and should be able to employ its
own body to sustain long-time tight interactions with the ex-
ternal environment to pursue its own goals (Chella and Man-
zotti 2009). Embodiment here refers not to a robot being able
to move using actuators but the kind of development and
causal processes engaged between an agent, its body, and
the external environment. This raises a concern in the def-
inition of autonomous agents that whether a non-embodied
agent would every really be autonomous. This begs the ques-
tion of redefining the autonomous behavior in humans, what
aspects of the cognitive behavior and the pragmatic architec-
ture in humans is considered as autonomy.

Additionally, similar constraints also exist on the design
and formulations of the capabilities for any cognitive archi-
tecture. The design of most architectures only focus on the
generalization of solutions to problems or executions of ac-
tions, but categorization, understanding and recognition of
events in the environment should be considered a crucial as-
pect in designing such architectures.

The extensive applications of cognitive architectures in
deployment of systems focusing on problem solving has
led to researchers move away from implementing episodic
memory into these architectures. However the inclusion of
episodic memory is an essential part for any system that at-
tempts to use its learned knowledge in diverse environments.

From an engineering perspective, and even from meta-
learning perspective, as identified by (Thórisson and Hel-
gasson 2012), architectures would become much more in-
teresting if the granularity of the subsystems is increased to
such a level so as to allow both the agent and the human de-
velopers to be able to modify the architecture easily based
on requirements of the environment.

Conclusion
Using the various views for the evaluation of cognitive archi-
tectures in order to assess the artificial general intelligence

exhibited by an agent does seem a very accurate way of
measuring partial progress of the system, but a design spec-
ification needs to be formulated for building the architec-
ture complete with formal definitions of each capability of
the system. This would prevent the ambiguity in the views
that each system is bound to, and would allow developers to
build truly general cognitive models by leveraging granular
abstractions of the function modules. This design specifica-
tion would even allow evaluation using more common test
problem like the one proposed in (Johnston 2010).

With this survey on the theory, design, and evaluation of
cognitive architectures we have covered the design goals be-
hind these architectures, the capabilities that they need to
address, and the various approaches to evaluate the intel-
ligent behavior in these architectures. We also covered the
shortcomings of the reviewed literature and presented fur-
ther research goals that needs to be addressed in the devel-
opment of architectures for Artificial General Intelligence
(AGI) systems.
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