
Hestia: Simple Least Privilege Network Policies for Smart Homes
Sanket Goutam

North Carolina State University
sgoutam@ncsu.edu

William Enck
North Carolina State University

whenck@ncsu.edu

Bradley Reaves
North Carolina State University

bgreaves@ncsu.edu

ABSTRACT
The long-awaited smart home revolution has arrived, and with it
comes the challenge of managing dozens of potentially vulnerable
network devices by average users. While research has developed
techniques to fingerprint these devices, and even provide for so-
phisticated network access control models, such techniques are too
complex for end users to manage, require sophisticated systems
or unavailable public device descriptions, and proposed network
policies have not been tested against real device behaviors. As a
result, none of these solutions are available to users today.

In this paper, we present Hestia, a mechanism to enforce simple-
but-effective network isolation policies. Hestia segments the net-
work into just two device categories: controllers (e.g., Smart Hubs)
and non-controllers (e.g., motion sensors and smart lightbulbs).
The key insight (validated with a large IoT dataset) is that non-
controllers only connect to cloud endpoints and controller devices,
and practically never to each other over IP networks. This means
that non-controllers can be isolated from each other without pre-
venting functionality. Perhaps more importantly, smart home own-
ers need only specify which devices are controllers. We develop
a prototype and show negligible performance overhead resulting
from the increased isolation. Hestia drastically improves smart
home security without complex, unwieldy policies or lengthy learn-
ing of device behaviors.

KEYWORDS
IoT & network security; smart home; least privilege policy
ACM Reference Format:
Sanket Goutam, William Enck, and Bradley Reaves. 2019. Hestia: Simple
Least Privilege Network Policies for Smart Homes. In 12th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec ’19), May
15–17, 2019, Miami, FL, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3317549.3323413

1 INTRODUCTION
Internet connected home devices, once a niche product category, are
now a normal part of consumers’ lives. In the United States alone,
33.2% of homes have at least one smart device, and this number is
expected to grow to 53.9% in the next four years [21]. The value
of these devices comes in part from their ability to be automated
and controlled in tandem from single interfaces like smart hubs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec ’19, May 15–17, 2019, Miami, FL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6726-4/19/05. . . $15.00
https://doi.org/10.1145/3317549.3323413

Not only do these devices provide the convenience of remotely
monitoring temperature and carbon monoxide sensors, accessing
video surveillance, tracking pets’ movements, and remotely locking
doors, they permit recipes like scheduling lights, music, and coffee
for breakfast time. As a result, devices of varying computational
ability manufactured by different vendors are filling homes, in some
cases tripling the number of Internet-connected devices.

These devices, individually and in toto, create significant se-
curity concerns. Not only are they deployed to perform sensitive
tasks (e.g., cameras monitoring children) but also play important
safety roles (e.g., door locks, smoke detection). Moreover, repeated
security flaws leading to severe operational failure [10], mass ex-
ploitation [3], and use of devices as a pivot to attack other net-
worked devices [22] mean trust in the average device is largely
misplaced. Popular devices have been found to be exploitable from
the local network [8, 16], creating the very real threat that a single
compromised device may then attack other local devices. Prior inci-
dents [8, 22] where IoT devices have been exploited to compromise
other systems on the same network make this threat clear. The fact
that these devices are collections of diverse hardware and software
complicates any and every host-based security solution. The sheer
number of devices alone currently or soon-to-be deployed means
that users would be overwhelmed with managing any host-based
security solution.

In this paper, we present a new system, Hestia, whose goal is
to reduce risk of compromise in smart homes by implementing
a least-privilege network policy. We first note that smart home
networks consist of a few controller devices, like automation hubs
and personal assistants that provide user interfaces, and the re-
maining non-controller devices that perform sensing, monitoring,
or actuating duties. We find that almost without exception, non-
controller devices only communicate with controllers and the cloud,
and never directly from non-controller device-to-device. The key
insight behind Hestia is that we can isolate individual smart home
non-controller devices to only communicate with controllers and
the cloud and no other devices. This provides a drastic reduction
in possible communication paths — approximating least-privilege
access to the network for non-controller devices. Configuration
is then incredibly straightforward: users need only specify which
devices are controllers.

This paper makes the following contributions:
• Wedemonstrate that our controller–non-controller dichotomy
is robust using a large public dataset of over 40 smart home
devices [2].

• We then construct a prototype of Hestia as a SDN application
for Open vSwitch; in so doing, we address policy manage-
ment, enforcement, and device discovery.

• We demonstrate that Hestia provides significantly enhanced
isolation with minimal performance impacts compared to a
stock wireless access point.

https://doi.org/10.1145/3317549.3323413
https://doi.org/10.1145/3317549.3323413
https://doi.org/10.1145/3317549.3323413

We are not the first to explore network policies to constrain IoT
device behavior. However, prior work either proposes enforcement
mechanisms without testing or validating policies [15], or requires
fine-grained policies [4] that require significant investment to spec-
ify or discover using (fallible) learning methods. This work provides
a validated policy that can be deployed today with minimal effort.

2 IS A SIMPLE MODEL PRACTICAL?
In this paper we are interested in applying a least privilege net-
work policy to reduce the risks posed by vulnerable IoT devices
to other devices on the local network. The critical challenge in
a least privilege policy is: how do we determine what privileges
a device needs? While industry mechanisms like MUD specifica-
tion [14] can provide fine grained device behavior descriptions,
they are currently not implemented for today’s devices, and may
never be implemented for low-cost offerings. Other proposed sys-
tems [5, 11, 15] leverage machine learning to learn device behaviors,
but still ultimately result in complex, unwieldy policies.

We hypothesized a simpler solution could be equally effective.
We begin with the hypothesis that IoT devices primarily connect
only to a smart hub or controllers, and not to other IoT devices
or user devices (e.g., laptops). Loosely, controller devices receive
control inputs from users, like Google Home or Alexa hubs, and
execute certain actions on other non-controller IoT devices, like
door locks or light bulbs. If this hypothesis held, we realized that a
least privilege policy need only allow data flows between individual
IoT devices and controllers, preventing compromised IoT devices
from successfully targeting other non-controller devices. Such a
policy can be implemented simply, with far less complexity or user
input than other methods. In this section, we demonstrate using
a previously-published large IoT dataset [2] that this approach is
feasible, leading the way to the development of our system, Hestia.
The following section then provides an insight on the goals of such
a design followed by an overview of our system.

2.1 Policy Evaluation
In prior work, Alrawi et al. [2] released the YourThings dataset that
includes 46 labelled smart home devices and the network traffic
they generated during a manual assessment of each device. They
recorded the device interactions on the network at 5 minute inter-
vals over a period of 10 days. We use these captures to validate our
hypothesis that amere distinction of controllers and non-controllers
is sufficient to achieve least privilege network policy.

2.1.1 Experiment. To test our hypothesis, we first manually classi-
fied the smart home devices in the YourThings data set into con-
trollers and non-controllers. Our classification criteria was that de-
vices which have one or more user-facing control interface (voice,
app, etc.) and can execute actions on other IoT devices are con-
trollers, while any other IoT devices are not. For instance, if a smart
TV has Alexa integrated and the manufacturer’s website details
that it can be used to control other devices in the network then
we identify it to be a controller. Whereas a smart light bulb may
be accompanied by an app on the users smart phone, but in no
scenario can it send instructions to any other IoT device in the
network. In most cases, necessary information about the device
was accessible directly from the manufacturers landing page for

Table 1: Device categorization on the YourThings data set
Distinguishing Feature No. of Devices Category

None 26 non-controllers
Voice Assistant 10 controllers

Remote Control Hub 9 controllers
Home Router 1 controllers

their device. This process was fast and could be repeated by users
with limited technical expertise.

Table 1 shows the number of devices that were classified as con-
trollers and non-controllers in the data set and the distinguishing
features used to determine this classification. We identified a total
of 20 out of the 46 labelled devices to be a controller in the network.

The next step was to filter the recorded network data for lo-
cal network communication and evaluate our policy. We used the
scapy Python library to filter all the local network packets from
each network capture and aggregated all device communications
for each day of the recordings. Once we had the aggregated net-
work communication data, we created a src - dst mapping of devices
where a unique mapping was created on a per-day basis.1 The goal
was to achieve an insight on which devices are able to send mes-
sages to each other (within each 24-hr period), and thus if we found
at least one instance of a packet exchange between two sets of
devices on the network then we recorded it in our mapping.

2.1.2 Findings. Using the src - dst mapping of device interactions
obtained for each day, we found that there were a total of 426
device-to-device communications that took place over the 10 day
period. Since we created these mappings on a day-to-day basis,
these include repeated instances of device-to-device interactions
over several days. We determined that 54.69% of these device inter-
actions were between devices that we had identified to be acting
as the controllers in the network. We also found that 45.07% of
connections occurred between controllers and non-controllers pre-
serving our hypothesis that non-controllers need controllers to
function. All of these packets conformed to our initial hypothesis
that communication from IoT devices is constrained to controllers
within the local network.

Our analysis revealed a single exception to the policy. We found
that two packets were exchanged between two non-controllers: a
D-Link DCS5009L camera and a Belkin Netcam. This was a UPnP
device discovery initiated by the D-Link camera requesting the
device details of Belkin Netcam. This device discovery was spurious
and was not necessary for legitimate functionality. In fact, it serves
as an example of the unnecessary and unauthorized network traffic
we seek to prevent. While we believe this traffic was innocuous, it
is similar to known attacks against the Belkin Netcam [17].

2.1.3 Takeaway. These empirical results validate our hypothesis
that a simple network policy limiting IoT device traffic on the local
network to only controller devices can be deployed in practice today
with virtually no disruption to the proper function of these devices.

3 PROBLEM
As demonstrated in Section 2, non-controller devices only require
network communication with the Internet and controller devices.
This observation offers an opportunity to enforce a network access
1The devices and configurations vary from day-to-day in the YourThings dataset

control policy that is both simple to specify and approaches least
privilege. In this section, we describe the problem via an example
scenario. We then define the threat model for Hestia.
Problem Scenario: Setting up a seemingly innocent user appli-
ance, like a smart coffee maker, involves three key steps. First, the
user installs the coffee maker in the desired location and uses an
accompanying smartphone app to connect to it, often via Bluetooth.
Second, the coffee maker attaches to the home WiFi network. It
either automatically uses the same WiFi SSID as the smartphone,
or discovers all available WiFi SSIDs and asks the user, through
the accompanying app, to select one and provide credentials. Fi-
nally, as the coffee maker connects to the WiFi network, remaining
connected until changes are made by the user. Note that users
are sometimes recommended to use network segmentation, or a
separate SSID just for smart home devices; however, doing so com-
plicates setup (e.g., if the SSID of the smartphone is cloned) and
often adds network management overhead for average users.

The purpose of a smart coffee maker is quite specific: it brews
coffee based on a schedule or when it receives a command from
the user. It needs to be connected to the home WiFi network, and
receive these user commands only from a supported controller plat-
form. The coffee maker is a non-controller device and thus should
not communicate with other non-controllers, like the printer, the
refrigerator, or the security camera on the network. By having full
access to the LAN, the coffee maker is thus over-privileged. Be-
cause these smart home appliances are essentially fully-featured,
Internet-connected Linux computers, vulnerabilities in their im-
plementation [8] mean attackers can use it as a pivot to attack the
entire network. This paper seeks to define an approximation of
least privilege network access for smart home devices that would
mitigate such a network compromise, while balancing usability.
Threat Model: We consider a smart home network where users
have multiple smart home appliances, like a smart coffee maker,
all connected to a consumer-grade router. By deploying all devices
on a shared network space, users put the same level of trust on
all connected devices. We assume that an adversary can discover
the vulnerable devices in a users’ household using malicious smart-
phone apps [20], by exploiting HTML error messages [1], or by
simply gaining physical control of the device [7]. Once the attacker
has gained access to a device, they can maliciously gather sensi-
tive information from other connected devices (e.g., unique device
identifiers) [1], use lateral movement to steal user data from the
network-attached storage unit [22], or discover a vulnerable se-
curity camera on the local network and attack it remotely [10].
Network compromises such as these are known as "Rube Goldberg"
attacks, where attackers penetrate the local network through a vul-
nerable device, and then use it to exploit other connected systems.
Note that many user devices, including NAS, coffee makers, and
security cameras, are non-controller devices and do not need to
interact with each other. Like other network access control systems
(e.g. firewalls), we recognize that detection of attacks (e.g. NAT hole
punching) and compromised devices (e.g. botnet infections [3]) will
have orthogonal solutions [9, 15].

Figure 1: Hestia provides virtual partitions around non-controller
devices while allowing controller devices to communicate with all
non-controller devices and each other. All devices can communicate
with the Internet.

4 HESTIA
As motivated by our empirical evaluation in Section 2, Hestia is
designed to enforce a simple policy: non-controller devices may only
communicate with controllers and the WAN. This policy allows for a
simple policy specification, only requiring knowledge of the link-
layer addresses of controller devices. While not explicitly included
or evaluated in our design, we reasonably assume the existence of
a mechanism for an end user to designate a device as a controller,
either a priori or during first the connection. Enforcing this simple
policy requires overcoming the following research challenges.

• Existing LAN network access control mechanisms do not medi-
ate between devices on the same LAN. VLANs and separate
WiFi SSIDs unnecessarily complicate network setup, and are
incompatible with many consumer smart home devices that
(a) automatically use the SSID of the smartphone performing
setup, and (b) use multicast discovery protocols.

• Multicast discovery packets from non-controller devices must
not reach other non-controller devices. Discovery protocols
such as mDNS and SSDP commonly use multicast packets.
Network layer multicast packets are broadcast to the link
layer, allowing devices to respond if they are configured for
that multicast address.

Hestia addresses the first research challenge using Software
Defined Networking (SDN) primitives. Specifically, we modify an
OpenWRT firmware to include an OvS (Open vSwitch) soft switch
that relays packets to a Ryu-based SDN controller application (po-
tentially running on the router). Through this SDN-based instru-
mentation, Hestia is able to mediate network communication be-
tween devices on the same LAN, without the need for VLANs or
multiple SSIDs. To address the second challenge, Hestia provides a
generic solution that supports mDNS, SSDP, and other multicast
discovery protocols without specific knowledge of the protocols.
To do so, Hestia uses the group table feature of OpenFlow 1.3 to
selectively duplicate multicast packets at the link-layer and send a
unicast version to controller devices.

Figure 1 overviews the Hestia architecture. The WiFi router in-
strumented with Hestia is configured with the MAC addresses of
all controller devices. By default, a device is a non-controller de-
vice. Since non-controller devices can communicate with controller
devices and the WAN, most devices will work automatically when
they are connected to the LAN. When the first packet of a new

flow arrives at the router’s WiFi interface, the Open vSwitch sends
the packet header information to the Ryu-based SDN controller
application. The SDN controller inspects the source and destination
MAC addresses. If the flow is allowed, an OpenFlow flow-mod is
sent back to Open vSwitch, permitting subsequent packets in the
flow to forward without the involvement of the SDN controller. If
the destination MAC address is one of a set of multicast addresses
used by device discovery protocols, Hestia uses the group table
feature of OpenFlow 1.3 to define action buckets that automatically
duplicate the payload and unicast send it to controller devices. The
remainder of this section describes the design of Hestia.

4.1 Enforcement
Hestia is configured with a list of identified controller devices. Our
implementation uses a JSON file enumerating the MAC addresses.
We envision two ways for Hestia to obtain this list. A straightfor-
ward way is for the user to identify each controller device when it
is added to the WiFi network for the first time. This specification
could occur via the router’s configuration web interface, or via a
companion smartphone application. As an automated alternative,
Hestia could be combined with IoT device fingerprinting system
such as IoT Sentinel [15] (though “controller” annotations would be
needed). Even with automation, Hestia should allow the end users
to manually designate controller devices as needed (e.g., to add
specific non-IoT devices such as smartphones and laptops). Note
that not every smartphone or laptop needs to be a controller device.
Only those requiring connections to other devices on the LAN need
to be controllers.

Hestia uses Open vSwitch to mediate packets between all de-
vices on the LAN. In normal WiFi access points (APs), the wireless
interface behaves as a bridge between the wireless clients. If a
frame originating from a wireless client is destined for another
client connected to the same wireless interface, then the frame is
directly sent to the other client without going through the network
stack (bypassing Open vSwitch). To force frames to go through
the network stack, we enable wireless isolation mode (also called
AP isolation or peer-to-peer blocking), which is available in stan-
dard APs. By default, wireless isolation will prevent all wireless
clients from communicating with one another. However, SDN can
selectively re-enable communication that adheres to the policy [12].
To do so, we configure Open vSwitch to forward packets to the
ingress port (OFPActionOutput(ofproto.OFPP_IN_PORT)) when
communication is between two wireless clients.

We implemented the Hestia SDN controller application using
Ryu. Ryu is relatively lightweight and Python-based, allowing it
to run on newer commodity routers with more resources, or via a
directly connected device (e.g., Raspberry Pi). Hestia installs flow
rules based on the device categorization to create a categorical
entity abstraction, as shown in Figure 1. Devices are classified as
“non-controller” by default. All non-controller devices are isolated
such that they can initiate connections to the Internet and con-
troller devices, but not to other non-controller devices. Therefore,
a controller device not designated as such will still have partial
functionality (e.g., Internet connectivity). Once a device is specified
as a controller, it may act as a traditional device on a LAN. Finally,
whenever the controller list is updated, Hestia flushes all OpenFlow

rules to ensure proper operation. In effect, this enforcement maps
to a loose approximation of least privilege based on the network
functionality, as we observed in Section 2.

4.2 Selective Device Discovery
Since most homes use dynamic IP assignment (i.e., DHCP) and do
not run internal DNS servers, controller devices use discovery pro-
tocols to connect to smart home devices. For example, mDNS and
SSDP discover devices by sending multicast packets, which reach
the NIC of all devices on the LAN. Devices configured as mDNS
or SSDP listeners consume the multicast packet and respond using
protocol-specific conventions. Hestia carefully controls device dis-
covery packets to prevent non-controller devices from performing
network reconnaissance and discovery protocol-based attacks.

Hestia seeks a generic approach for handling device discovery
that works without protocol-specific knowledge of mDNS and SSDP.
Standard network implementations handle multicast packets by
copying the original packet from the source and broadcasting it to
all connected devices with a MAC layer destination address of the
desired multicast group. To achieve selective isolation for multicast
communication, Hestia must control which devices can receive the
multicast packet.

To efficiently mediate multicast device discovery protocols, Hes-
tia uses the group table feature in OpenFlow 1.3. Group tables allow
an SDN controller to define action buckets that automatically dupli-
cate the packet for each action target. When a non-controller sends
a multicast packet, Hestia creates a group table that matches on the
source MAC address of the non-controller and the destination MAC
address of each multicast group. We then use the action buckets
to specify an action for each controller MAC address. In doing so,
Open vSwitch effectively converts multicast packets into unicast
packets, without sending the packet payload to the SDN controller
application. Note that multicast packets from controller devices are
forwarded as normal.

4.3 Implementation
We implemented Hestia on top of a custom OpenWrt firmware with
Open vSwitch and Hostapd pre-compiled. We removed the default
Linux bridge and separately added an Open vSwitch bridge. We
used the Ryu SDN framework and implemented the Hestia SDN
controller in 320 lines of Python.

5 EVALUATION
The previous section described the design of Hestia. In this sec-
tion, we show that Hestia has negligible performance impact. Our
network evaluation explores a total 12 different experimental con-
ditions. To evaluate the network performance of Hestia, we want
to investigate the impacts on latency and throughput to all com-
munication types: device-to-device, device-to-cloud, and multicast
messages. For all message types, we also consider the difference
in non-controller-to-controller flows and controller-to-controller
flows. For each measurement, we compare Hestia to the stock Open-
WRT firmware and the default “Simple Switch” Ryu app.

We measure three key variables: first packet latency, average
(non-first) packet latency, and average throughput. We distinguish
the first packet of each flow from subsequent packets because SDN

(a) (b) (c)
Figure 2: Hestia adds negligible overhead to latency or throughput when compared against a default SDN app

systems must forward the first packet of a new flow to the SDN
controller to make a routing decision, increasing the latency of
establishing the flow. Subsequent packets are not referred to the
SDN controller and are unaffected by this additional latency.

For each round of the latency experiment we send 10 ICMP
ping messages to measure latency between two devices or between
the device and the WAN (google.com). We run 100 rounds of this
experiment for each experimental condition, with a 5 second delay
between rounds. When testing an SDN app, we cleared all flow
rules to ensure that each run reflects the latency of a new flow.

Most latency measurement tools, including ping, do not support
multicast latency experiments. To evaluate multicast latency, we
developed a tool using the Python socket library that measures the
time to receive TCP SYN-ACK packets in response to a SYN packet
sent to a multicast address. We conduct this test with 2 receiving
laptops and one sending laptop. For each experimental condition
we run 100 rounds, with a 5 second delay between each round, and
clear all flow rules between each run.

For each round of throughput measurements we use the iperf
tool to conduct a 10-second TCP bandwidth measurement; each
round was repeated 20 times for each experimental condition, with
a five second delay between experiments. Like the latency experi-
ments, we cleared all installed flow rules between each run.

Our experiment testbed network consists of a standard home
router (Linksys WRT 1900 ACSv2) running OpenWRT LEDE 17.01,
a Linux desktop serving as the SDN controller, a Macbook Air (Mid
2009) used to generate test traffic, and seven other user devices in-
cluding smart phones, tablets, laptops, and eBook readers. Because
we are evaluating WiFi performance, actual device type will have
a negligible effect on latency and throughput. Since Hestia cate-
gorizes all IoT devices as either controllers or non-controllers, we
performed separate sets of experiments with the Macbook acting
as a controller and as a non-controller. Additionally, we configured
all of the other 7 devices as the non-controllers in the network
so multicast packets are sent to all connected devices by the AP,
ensuring uniformity across all experiments. We note that we use
the desktop as the SDN controller for convenient deployment; in so
doing, we overestimate the network latencies due to the controller.
Future deployments can integrate the controller directly into the
access point to further reduce latency.

Results: Figure 2 shows the results of our experiments, with the
first two subfigures showing latency results. Each bar is shown
with an error bar indicating standard error. First, we can observe in
Figure 2a that in all communication settings and devices, average
latency is largely constant, indicating that Hestia performs on par
with both a stock OpenWRT image and a stock SDN app. Naturally,
we see that local communications have lower latency than those to
theWAN.We also see that multicast packets have drastically higher
latency; this is because multicast implementations wait a random
amount of time before responding to avoid collisions. The one
exception to these trends is in the non-controller multicast latency,
which is lower than any other setting because the multicast packet
is converted into a series of unicast packets and sent to only a
specific set of devices (controllers). This is also an indication that
Hestia is providing isolation correctly.

Second, in Figure 2b, we see that the latency for first packets
only is significantly higher for all SDN systems, including both the
SimpleSwitch app and Hestia, than for the stock access point. This
is simply due to the first packet being forwarded to the controller
for a flow decision. Hestia performs similarly to SimpleSwitch in
all test cases except for non-controller multicast latency, which is
faster for the same reason as the previous experiments.

Finally, Figure 2c shows the results of our throughput experiment.
Similar to our previous experiments, we find that Hestia does not
negatively impact throughput.

6 RELATEDWORK
Recent work on securing smart home deployments has focused on
traditional mechanisms such as intrusion detection [18], behavioral
fingerprinting of IoT devices [5, 11], whitelisting connections at
the gateway router [4], or providing new security abstractions by
authenticating application data flows on devices [6, 13, 23]. Unfortu-
nately these mechanisms either require a redesign of legacy devices,
are not scalable for the constantly evolving smart home ecosystem,
or focus solely on selected appified platforms. Prior work has also
proposed providing access control to devices based on the context
of their environmental situation [19]. However such systems re-
quire implementation in the IoT stack of several frameworks from
all manufacturers, making it not readily deployable currently.

Closest to Hestia, prior work has provided policy for device com-
munication [4] and monitored device connections using gateway
controller devices [11, 15, 23]. Barrera et al. [4] address device-to-
cloud communication by whitelisting device connections at the
gateway router. However, their fine-grained policy will be difficult
to manage as devices gain features allowing customization or ex-
tensibility. Since certain smart home products support interfacing
with a variety of cloud services, enumerating all possible features
in an exhaustive firewall policy will become infeasible. To address
the security of device-to-device communication, IoTSec [23] ana-
lyzes data flows from IoT devices, and allow interactions based on
an application level policy. IoT-Sentinel [15] and IoTurva [11] are
designed with a similar architecture in mind. They create ad hoc
network overlays for connected devices and use OpenFlow rules to
constrain the communication from vulnerable devices. They pro-
vide sophisticated ways of identifying a vulnerable device (through
an IoT Security Service) and confine its traffic flows using network
isolation policies. Their enforcement mechanism, however, only
addresses unicast communication from devices. This means that
an adversary could still use multicast packets to gain sensitive
information from connected devices.

Unlike prior work, Hestia achieves enhanced isolation between
devices by mediating service discovery and providing default net-
work policies that are validated for effective deployment. Hestia
provides a default access control mechanism for smart home de-
vices, approaching least-privilege, being user-configurable to scale
with the changing smart home environment, and simple enough to
be readily deployable today.

7 CONCLUSION
The growing number of IoT devices emerging in consumers’ home
networks continues to raise significant security and privacy con-
cerns. While efforts to improve IoT device security are important,
the broad heterogeneity of devices and manufacturers necessitates
network-based controls to mitigate the effects of compromised de-
vices. Recently proposed network access controls for IoT devices
provide great flexibility, but they require fine-grained policies that
are difficult to specify. This paper proposed a practical approach
to the problem. We categorized devices into controllers and non-
controllers and hypothesized that non-controllers only need to
communicate with controllers and cloud servers. We validated this
hypothesis using a public dataset of network traces of over 40 smart
home devices. We then proposed Hestia, which enforces this in-
tuitive policy. Hestia only requires users to specify which devices
are controllers and introduces negligible performance overhead.
As such, Hestia provides an effective and practical way to provide
least-privilege access control in smart home networks.

8 ACKNOWLEDGMENT
We would like to thank our anonymous reviewers for their valuable
comments, and Merve Sahin for shepherding our paper. We also
thank Terrence O’Connor, Benjamin Andow, Issac Polinsky, and
the Wolfpack Security and Privacy Research (WSPR) lab as a whole
for their helpful feedback.

REFERENCES
[1] Gunes Acar, Danny Yuxing Huang, Frank Li, Arvind Narayanan, and Nick Feam-

ster. 2018. Web-based attacks to discover and control local IoT devices. In Pro-
ceedings of the 2018 Workshop on IoT Security and Privacy. ACM, 29–35.

[2] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:
Security Evaluation of Home-Based IoT Deployments. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE, 0.

[3] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding
the Mirai Botnet. In USENIX Security Symposium.

[4] David Barrera, Ian Molloy, and Heqing Huang. 2018. Standardizing IoT Network
Security Policy Enforcement. In Workshop on Decentralized IoT Security and
Standards (DISS), Vol. 2018. 6.

[5] Bruhadeshwar Bezawada, Maalvika Bachani, Jordan Peterson, Hossein Shirazi,
Indrakshi Ray, and Indrajit Ray. 2018. Behavioral Fingerprinting of IoT Devices.
In Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security
(ASHES ’18). ACM, New York, NY, USA, 41–50. https://doi.org/10.1145/3266444.
3266452

[6] Soteris Demetriou, Nan Zhang, Yeonjoon Lee, XiaoFeng Wang, Carl A. Gunter,
Xiaoyong Zhou, and Michael Grace. 2017. HanGuard: SDN-driven Protection
of Smart Home WiFi Devices from Malicious Mobile Apps. In Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec ’17). ACM, New York, NY, USA, 122–133.

[7] Nitesh Dhanjani. 2015. Abusing the internet of things: Blackouts, freakouts, and
stakeouts. O’Reilly Media, Inc.

[8] Ben Dickson. 2019. More Smart home devices vulnerable, McAfee researchers
find. Retrieved March 15, 2019 from https://www.dailydot.com/debug/
smart-home-mcafee-attacks

[9] F-Secure. 2018. What are the current projection features for f-secure
sense? Retrieved January 5, 2019 from https://community.f-secure.com/t5/
F-Secure-SENSE/What-are-the-current-security/ta-p/82972

[10] Andy Greenberg. 2017. Hack Brief: ’Devil’s Ivy’ vulnerability could afflict millions
of IoT devices. Retrieved March 15, 2019 from https://www.wired.com/story/
devils-ivy-iot-vulnerability/

[11] Ibbad Hafeez, Aaron Yi Ding, and Sasu Tarkoma. 2017. IOTURVA: Securing
Device-to-Device (D2D) Communication in IoT Networks. In Proceedings of the
12th Workshop on Challenged Networks. ACM, 1–6.

[12] Seppo Hätönen, Petri Savolainen, Ashwin Rao, Hannu Flinck, and Sasu Tarkoma.
2016. Off-the-Shelf Software-defined Wi-Fi Networks. In Proceedings of the 2016
ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY, USA, 609–610.
https://doi.org/10.1145/2934872.2959071

[13] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Zhuoqing Morley Mao, Atul Prakash, and Shanghai JiaoTong Unviersity. 2017.
ContexloT: Towards Providing Contextual Integrity to Appified IoT Platforms.. In
Proceedings of the Network and Distributed Systems Security Symposium (NDSS).

[14] Eliot Lear, Ralph Droms, and Dan Romascanu. 2018. Manufacturer Usage De-
scription Specification. Internet-Draft. IETF Secretariat. http://www.ietf.org/
internet-drafts/draft-ietf-opsawg-mud-25.txt

[15] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N Asokan, Ahmad-Reza
Sadeghi, and Sasu Tarkoma. 2017. IoT Sentinel: Automated device-type identifi-
cation for security enforcement in IoT. In Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on. IEEE, 2177–2184.

[16] Lily Hay Newman. 2018. An Elaborate Hack Shows How Much Damage IoT
Bugs Can Do. Retrieved March 15, 2019 from https://www.wired.com/story/
elaborate-hack-shows-damage-iot-bugs-can-do/

[17] phikshun. 2018. Belkin NetcamHDUPnP Command Injection - Github. Retrieved
January 5, 2019 from https://gist.github.com/phikshun/9984624

[18] Shahid Raza, Linus Wallgren, and Thiemo Voigt. 2013. SVELTE: Real-time intru-
sion detection in the Internet of Things. Ad hoc networks 11, 8 (2013), 2661–2674.

[19] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational Access Con-
trol in the Internet of Things. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 1056–1073.

[20] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. 2016. Smart-
phones attacking smart-homes. In Proceedings of the 9th ACM Conference on
Security & Privacy in Wireless and Mobile Networks. ACM, 195–200.

[21] Statista. 2018. Smart Home Market penetration in US. Retrieved January 2, 2019
from https://www.statista.com/outlook/279/109/smart-home/united-states

[22] Wang Wei. 2018. Casino Gets Hacked Through Its Internet-Connected Fish Tank
Thermometer. Retrieved March 16, 2019 from https://thehackernews.com/2018/
04/iot-hacking-thermometer.html

[23] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and Chenren Xu.
2015. Handling a Trillion (Unfixable) Flaws on a Billion Devices: Rethinking
Network Security for the Internet-of-Things. In Proceedings of the 14th ACM
Workshop on Hot Topics in Networks (HotNets-XIV). ACM, New York, NY, USA,
Article 5, 7 pages. https://doi.org/10.1145/2834050.2834095

https://doi.org/10.1145/3266444.3266452
https://doi.org/10.1145/3266444.3266452
https://www.dailydot.com/debug/smart-home-mcafee-attacks
https://www.dailydot.com/debug/smart-home-mcafee-attacks
https://community.f-secure.com/t5/F-Secure-SENSE/What-are-the-current-security/ta-p/82972
https://community.f-secure.com/t5/F-Secure-SENSE/What-are-the-current-security/ta-p/82972
https://www.wired.com/story/devils-ivy-iot-vulnerability/
https://www.wired.com/story/devils-ivy-iot-vulnerability/
https://doi.org/10.1145/2934872.2959071
http://www.ietf.org/internet-drafts/draft-ietf-opsawg-mud-25.txt
http://www.ietf.org/internet-drafts/draft-ietf-opsawg-mud-25.txt
https://www.wired.com/story/elaborate-hack-shows-damage-iot-bugs-can-do/
https://www.wired.com/story/elaborate-hack-shows-damage-iot-bugs-can-do/
https://gist.github.com/phikshun/9984624
https://www.statista.com/outlook/279/109/smart-home/united-states
https://thehackernews.com/2018/04/iot-hacking-thermometer.html
https://thehackernews.com/2018/04/iot-hacking-thermometer.html
https://doi.org/10.1145/2834050.2834095

	Abstract
	1 Introduction
	2 Is a Simple Model Practical?
	2.1 Policy Evaluation

	3 Problem
	4 Hestia
	4.1 Enforcement
	4.2 Selective Device Discovery
	4.3 Implementation

	5 Evaluation
	6 Related Work
	7 Conclusion
	8 Acknowledgment
	References

